Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hagfeldt, Anders (Ed.)TEMPO has been widely explored as one of the most promising catholyte redox scaffolds in aqueous redox flow batteries, but the often-observed performance degradation raises concern with respect to its chemical instability. In this work, we demonstrate that the charged TEMPO species (i.e., TEMPO+) lack sufficient stability and also determine the major decomposition pathways. The decay products of TEMPO+ are experimentally analyzed using combined tools including nuclear magnetic resonance and mass spectroscopy. Reductive conversion to 2,2,6,6-tetramethylpiperidine (TEMPH) is commonly observed for a variety of 4-O-substituted TEMPO derivatives. The general detection of alkene and related carbonyl signals, in conjunction with the electrolyte acidification, reveals a deprotonation-initiated ring opening route that proceeds towards TEMPO decay. The protons on the β carbon are susceptible to chemical extraction by nucleophilic agents such as hydroxyl and the formed piperidine. This finding highlights the intrinsic structural factors for TEMPO degradation and will shed light on the potential stabilization strategies to afford long-cycling TEMPO-based flow batteries.more » « lessFree, publicly-accessible full text available January 1, 2027
-
Transient nanoclusters in aqueous ZnSO4electrolytes are revealed with X-ray scattering and molecular dynamics simulations. These nanoclusters exhibit diverse sizes and geometries, influencing ion correlations and transport properties.more » « lessFree, publicly-accessible full text available October 6, 2026
-
Abstract Manganese‐rich layered oxide materials hold great potential as low‐cost and high‐capacity cathodes for Na‐ion batteries. However, they usually form a P2 phase and suffer from fast capacity fade. In this work, an O3 phase sodium cathode has been developed out of a Li and Mn‐rich layered material by leveraging the creation of transition metal (TM) and oxygen vacancies and the electrochemical exchange of Na and Li. The Mn‐rich layered cathode material remains primarily O3 phase during sodiation/desodiation and can have a full sodiation capacity of ca. 220 mAh g−1. It delivers ca. 160 mAh g−1specific capacity between 2–3.8 V with >86 % retention over 250 cycles. The TM and oxygen vacancies pre‐formed in the sodiated material enables a reversible migration of TMs from the TM layer to the tetrahedral sites in the Na layer upon de‐sodiation and sodiation. The migration creates metastable states, leading to increased kinetic barrier that prohibits a complete O3‐P3 phase transition.more » « less
An official website of the United States government
