skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, Kyung_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As algorithmic decision making is increasingly deployed in every walk of life, many researchers have raised concerns about fairness-related bias from such algorithms. But there is little research on harnessing psychometric methods to uncover potential discriminatory bias inside decision-making algorithms. The main goal of this article is to propose a new framework for algorithmic fairness based on differential item functioning (DIF), which has been commonly used to measure item fairness in psychometrics. Our fairness notion, which we call differential algorithmic functioning (DAF), is defined based on three pieces of information: a decision variable, a “fair” variable, and a protected variable such as race or gender. Under the DAF framework, an algorithm can exhibit uniform DAF, nonuniform DAF, or neither (i.e., non-DAF). For detecting DAF, we provide modifications of well-established DIF methods: Mantel–Haenszel test, logistic regression, and residual-based DIF. We demonstrate our framework through a real dataset concerning decision-making algorithms for grade retention in K–12 education in the United States. 
    more » « less