skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Han, Songi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 27, 2025
  2. Free, publicly-accessible full text available October 24, 2024
  3. Phosphates and polyphosphates play ubiquitous roles in biology as integral structural components of cell membranes and bone, or as vehicles of energy storage via adenosine triphosphate and phosphocreatine. The solution phase space of phosphate species appears more complex than previously known. We present nuclear magnetic resonance (NMR) and cryogenic transmission electron microscopy (cryo-TEM) experiments that suggest phosphate species including orthophosphates, pyrophosphates, and adenosine phosphates associate into dynamic assemblies in dilute solutions that are spectroscopically “dark.” Cryo-TEM provides visual evidence of the formation of spherical assemblies tens of nanometers in size, while NMR indicates that a majority population of phosphates remain as unassociated ions in exchange with spectroscopically invisible assemblies. The formation of these assemblies is reversibly and entropically driven by the partial dehydration of phosphate groups, as verified by diffusion-ordered spectroscopy (DOSY), indicating a thermodynamic state of assembly held together by multivalent interactions between the phosphates. Molecular dynamics simulations further corroborate that orthophosphates readily cluster in aqueous solutions. This study presents the surprising discovery that phosphate-containing molecules, ubiquitously present in the biological milieu, can readily form dynamic assemblies under a wide range of commonly used solution conditions, highlighting a hitherto unreported property of phosphate’s native state in biological solutions. 
    more » « less
  4. Abstract

    Phosphate is an essential anion in the human body, comprising approximately 1% of the total body weight, and playing a vital role in metabolism, cell membranes, and bone formation. We have recently provided spectroscopic, microscopic, and computational evidence indicating that phosphates can aggregate much more readily in solution than previously thought. This prior work provided indirect evidence through the observation of unusual P NMR relaxation and line‐broadening effects with increasing temperature. Here, we show that, under conditions of slow exchange and selective RF saturation, additional features become visible in chemical exchange saturation transfer (CEST) experiments, which appear to be related to the previously reported phosphate clustering. In particular, CEST shows pronounced dips several ppm upfield of the main phosphate resonance at low temperatures, while direct P spectroscopy does not produce any signals in that range. We study the pH dependence of these new spectroscopic features and present exchange and spectroscopic parameters based on fitting the CEST data. These findings could be of importance in the investigation of phosphate dynamics, especially in the biological milieu.

    more » « less