Dynamic Nuclear Polarization (DNP) utilizing Electron Spin Clusters to achieve resonance matching with the nucleus and to generate an Asymmetric Polarization Elevation (ESCAPE-DNP, or ESC-DNP for short) by monochromatic microwave irradiation at a select frequency is debuted as a promising mechanism to achieve NMR signal enhancements with a wide design scope requiring low microwave power at high magnetic field. In this paper, we present the design for a trityl-based tetra-radical (TetraTrityl) to achieve DNP for 1H NMR at 7 Tesla, supported by experimental data and quantum mechanical simulations. A slow relaxing (T1e ≈ 1 ms) four electron spin cluster is found to require at least two electron pairs with e-e distances of 8 Å or below to yield any meaningful 1H ESC-DNP NMR enhancement, while squeezing the rest of the e-e distances to 12 Å or below gives rise to near maximum 1H ESC-DNP-NMR enhancements. For the more common case of a fast-relaxing spin cluster (T1e ≈ 1 μs), efficient ESC-DNP is found to require an asymmetric ESC that contains a cluster of strongly coupled narrow-line radicals coexisting with a weakly coupled narrow-line radical acting as a sensitizer to extract polarization from the cluster. This study highlights the untapped potential of utilizing strong coupling of narrow-line radical clusters to achieve microwave power-efficient DNP that extends design options beyond what is available today and offers great tunability at high magnetic field.
more »
« less
Multi Electron Spin Cluster Enabled Dynamic Nuclear Polarization with Sulfonated BDPA
Dynamic nuclear polarization (DNP) can amplify the solid-state nuclear magnetic resonance (NMR) signal by several orders of magnitude. The mechanism of DNP utilizing α,γ- Bisdiphenylene-β-phenylallyl (BDPA) variants as Polarizing Agents (PA) has been the subject of lively discussions on account of their remarkable DNP efficiency with low demand for microwave power. We propose that electron spin clustering of SA-BDPA is responsible for its DNP performance, as revealed by the temperature-dependent shape of the central DNP profile and strong electron-electron (e-e) crosstalk seen by Electron Double Resonance. We demonstrate that a multi-electron spin cluster can be modeled with three coupled spins, where electron J (exchange) coupling between one of the e-e pairs matching the NMR Larmor frequency induces the experimentally observed absorptive central DNP profile, and the electron T1e modulated by temperature and magic angle spinning alters the shape between an absorptive and dispersive feature. Understanding the microscopic origin is key to designing new PAs to harness the microwave power-efficient DNP effect observed with BDPA variants.
more »
« less
- Award ID(s):
- 2411584
- PAR ID:
- 10534417
- Publisher / Repository:
- Journal of Physical Chemistry Letters
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry Letters
- Volume:
- 14
- Issue:
- 51
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 11640 to 11650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding the spatial distribution of the P1 centers is crucial for diamond-based sensors and quantum devices. P1 centers serve as polarization sources for dynamic nuclear polarization (DNP) quantum sensing and play a significant role in the relaxation of nitrogen vacancy (NV) centers. Additionally, the distribution of NV centers correlates with the distribution of P1 centers, as NV centers are formed through the conversion of P1 centers. We utilized DNP and pulsed electron paramagnetic resonance (EPR) techniques that revealed strong clustering of a significant population of P1 centers that exhibit exchange coupling and produce asymmetric line shapes. The 13C DNP frequency profile at a high magnetic field revealed a pattern that requires an asymmetric EPR line shape of the P1 clusters with electron–electron (e–e) coupling strengths exceeding the 13C nuclear Larmor frequency. EPR and DNP characterization at high magnetic fields was necessary to resolve energy contributions from different e–e couplings. We employed a two-frequency pump–probe pulsed electron double resonance technique to show cross-talk between the isolated and clustered P1 centers. This finding implies that the clustered P1 centers affect all of the P1 populations. Direct observation of clustered P1 centers and their asymmetric line shape offers a novel and crucial insight into understanding magnetic noise sources for quantum information applications of diamonds and for designing diamond-based polarizing agents with optimized DNP efficiency for 13C and other nuclear spins of analytes. We propose that room temperature 13C DNP at a high field, achievable through straightforward modifications to existing solution-state NMR systems, is a potent tool for evaluating and controlling diamond defects.more » « less
-
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B 0 , unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings J ex of the order of the electron Larmor frequency ω E . Numerical and analytical calculations show that in such J ex ≈ ± ω E cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.more » « less
-
Dynamic nuclear polarization (DNP) is a method of enhancing NMR signals via the transfer of polarization from electron spins to nuclear spins using microwave (MW) irradiation. In most cases, monochromatic continuous-wave (MCW) MW irradiation is used. Recently, several groups have shown that frequency modulation of the MW irradiation can result in an additional increase in DNP enhancement above that obtained with MCW. The effect of frequency modulation on the solid effect (SE) and the cross effect (CE) has previously been studied using the stable organic radical 4-hydroxy TEMPO (TEMPOL) at temperatures under 20 K. Here, in addition to the SE and CE, we discuss the effect of frequency modulation on the Overhauser effect (OE) and the truncated CE (tCE) in the room-temperature 13C-DNP of diamond powders. We recently showed that diamond powders can exhibit multiple DNP mechanisms simultaneously due to the heterogeneity of P1 (substitutional nitrogen) environments within diamond crystallites. We explore how the two parameters that define the frequency modulation: (i) the Modulation frequency, fm (how fast the microwave frequency is varied) and (ii) the Modulation amplitude, Δω (the magnitude of the change in microwave frequency) influence the enhancement obtained via each mechanism. Frequency modulation during DNP not only allows us to improve DNP enhancement, but also gives us a way to control which DNP mechanism is most active. By choosing the appropriate modulation parameters, we can selectively enhance some mechanisms while simultaneously suppressing others.more » « less
-
Abstract Dynamic nuclear polarization (DNP) is a powerful tool to enhance the NMR signals of molecules by transferring polarization from unpaired electron spins to nuclei through microwave irradiation. The resulting signal enhancements can enable the analysis of samples that have previously been intractable by NMR spectroscopy, including proteins, nucleic acids, and metabolites in cells. To carry out DNP, the sample is doped with a polarization agent, a biradical containing two nitroxide moieties. DNP applications in cells, however, present significant challenges as nitroxides are often susceptible to the reducing cellular environment. Here, we introduce a novel polarization agent, POPAPOL, that exhibits increased lifetimes under reducing conditions. We also compare its bioresistance and DNP performance with three popular, commercially available polarization agents. Our work indicates that pyrrolidine‐based nitroxides can outperform piperidine‐based nitroxides in cellular environments, and that future polarization agent designs must carefully balance DNP performance and stability for cellular applications.more » « less
An official website of the United States government

