- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, Craig D. (1)
-
Anderson-Teixeira, Kristina (1)
-
Aukema, Brian H. (1)
-
Bond-Lamberty, Ben (1)
-
Chini, Louise (1)
-
Clark, James S. (1)
-
Dietze, Michael (1)
-
Grossiord, Charlotte (1)
-
Hanbury-Brown, Adam (1)
-
Hanbury‐Brown, Adam R. (1)
-
Hurtt, George C. (1)
-
Jackson, Robert B. (1)
-
Johnson, Daniel J. (1)
-
Kueppers, Lara (1)
-
Kueppers, Lara M. (1)
-
Lichstein, Jeremy W. (1)
-
McDowell, Nate G. (1)
-
Muller‐Landau, Helene C. (1)
-
Ogle, Kiona (1)
-
Poulter, Benjamin (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Vegetation demographic models (VDMs) endeavor to predict how global forests will respond to climate change. This requires simulating which trees, if any, are able to recruit under changing environmental conditions. We present a new recruitment scheme for VDMs in which functional‐type‐specific recruitment rates are sensitive to light, soil moisture and the productivity of reproductive trees.We evaluate the scheme by predicting tree recruitment for four tropical tree functional types under varying meteorology and canopy structure at Barro Colorado Island, Panama. We compare predictions to those of a current VDM, quantitative observations and ecological expectations.We find that the scheme improves the magnitude and rank order of recruitment rates among functional types and captures recruitment limitations in response to variable understory light, soil moisture and precipitation regimes.Our results indicate that adopting this framework will improve VDM capacity to predict functional‐type‐specific tree recruitment in response to climate change, thereby improving predictions of future forest distribution, composition and function.more » « less
-
McDowell, Nate G.; Allen, Craig D.; Anderson-Teixeira, Kristina; Aukema, Brian H.; Bond-Lamberty, Ben; Chini, Louise; Clark, James S.; Dietze, Michael; Grossiord, Charlotte; Hanbury-Brown, Adam; et al (, Science)Forest dynamics arise from the interplay of environmental drivers and disturbances with the demographic processes of recruitment, growth, and mortality, subsequently driving biomass and species composition. However, forest disturbances and subsequent recovery are shifting with global changes in climate and land use, altering these dynamics. Changes in environmental drivers, land use, and disturbance regimes are forcing forests toward younger, shorter stands. Rising carbon dioxide, acclimation, adaptation, and migration can influence these impacts. Recent developments in Earth system models support increasingly realistic simulations of vegetation dynamics. In parallel, emerging remote sensing datasets promise qualitatively new and more abundant data on the underlying processes and consequences for vegetation structure. When combined, these advances hold promise for improving the scientific understanding of changes in vegetation demographics and disturbances.more » « less