skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pervasive shifts in forest dynamics in a changing world
Forest dynamics arise from the interplay of environmental drivers and disturbances with the demographic processes of recruitment, growth, and mortality, subsequently driving biomass and species composition. However, forest disturbances and subsequent recovery are shifting with global changes in climate and land use, altering these dynamics. Changes in environmental drivers, land use, and disturbance regimes are forcing forests toward younger, shorter stands. Rising carbon dioxide, acclimation, adaptation, and migration can influence these impacts. Recent developments in Earth system models support increasingly realistic simulations of vegetation dynamics. In parallel, emerging remote sensing datasets promise qualitatively new and more abundant data on the underlying processes and consequences for vegetation structure. When combined, these advances hold promise for improving the scientific understanding of changes in vegetation demographics and disturbances.  more » « less
Award ID(s):
1754443 1831952
PAR ID:
10197309
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Science
Volume:
368
Issue:
6494
ISSN:
0036-8075
Page Range / eLocation ID:
eaaz9463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite decades of progress, much remains unknown about successional trajectories of carbon (C) cycling in north temperate forests. Drivers and mechanisms of these changes, including the role of different types of disturbances, are particularly elusive. To address this gap, we synthesized decades of data from experimental chronosequences and long-term monitoring at a well-studied, regionally representative field site in northern Michigan, USA. Our study provides a comprehensive assessment of changes in above- and belowground ecosystem components over two centuries of succession, links temporal dynamics in C pools and fluxes with underlying drivers, and offers several conceptual insights to the field of forest ecology. Our first advance shows how temporal dynamics in some ecosystem components are consistent across severe disturbances that reset succession and partial disturbances that slightly modify it: both of these disturbance types increase soil N availability, alter fungal community composition, and alter growth and competitive interactions between short-lived pioneer and longer-lived tree taxa. These changes in turn affect soil C stocks, respiratory emissions, and other belowground processes. Second, we show that some other ecosystem components have effects on C cycling that are not consistent over the course of succession. For example, canopy structure does not influence C uptake early in succession, but becomes important as stands develop, and the importance of individual structural properties changes over the course of two centuries of stand development. Third, we show that in recent decades, climate change is masking or overriding the influence of community composition on C uptake, while respiratory emissions are sensitive to both climatic and compositional change. In synthesis, we emphasize that time is not a driver of C cycling; it is a dimension within which ecosystem drivers such as canopy structure, tree and microbial community composition change. Changes in those drivers, not in forest age, are what control forest C trajectories, and those changes can happen quickly or slowly, through natural processes or deliberate intervention. Stemming from this view and a whole-ecosystem perspective on forest succession, we offer management applications from this work and assess its broader relevance to understanding long-term change in other north temperate forest ecosystems. 
    more » « less
  2. Land use change analysis provides valuable information for landscape monitoring, managing, and prioritizing large area conservation practices. There has been significant interest in the southeastern United States (SEUS) due to substantial land change from various economic activities since the 1940s. This study uses quantitative data from the Economic Research Service (ERS) for landscape change analysis, addressing land change among five major land types for twelve states in the SEUS from 1945 to 2012. The study also conducted a literature review using the PSALSAR framework to identify significant drivers related to land type changes from research articles within the region. The analysis showed how each land type changed over the period for each state in the time period and the percentage change for the primary drivers related to land use change. The literature review identified significant drivers of land use and land cover change (LULCC) within the SEUS. The associated drivers were categorized into natural and artificial drivers, then further subdivided into eight categories related to land type changes in the region. A schematic diagram was developed to show land type changes that impacted environmental changes from various studies in the SEUS. The results concluded that Forest land accounted for 12% change and agricultural land for 20%; population growth in the region is an average of 2.59% annually. It also concluded that the need for research to understand past land use trends, direction and magnitude of land cover changes is essential. Significant drivers such as urban expansion and agriculture are critical to the impending use of land in the region; their impacts are attributed to environmental changes in the region and must be monitored. 
    more » « less
  3. Abstract MotivationRapid climate change is altering plant communities around the globe fundamentally. Despite progress in understanding how plants respond to these climate shifts, accumulating evidence suggests that disturbance could not only modify expected plant responses but, in some cases, have larger impacts on compositional shifts than climate change. Climate‐driven disturbances are becoming increasingly common in many biomes and are key drivers of vegetation dynamics at both species and community levels. Palaeoecological records provide valuable observational windows for elucidating the long‐term impacts of these disturbances on plant dynamics; however, sparse resolution and difficulty in disentangling drivers of change limit our ability to understand the impact of disturbance on plant communities. In this targeted review, we highlight emerging opportunities in palaeoecology to advance our understanding about how disturbance, especially fire, impacts the ecological and evolutionary dynamics of terrestrial plant communities. LocationGlobal examples, with many from North America. ConclusionsWe propose a set of palaeoecological and integrative approaches that could greatly enhance our understanding of how disturbance regimes influence global plant dynamics. Specifically, we identify four future study areas: (1) focus on palaeoecological disturbance proxies beyond fire and leverage multi proxy research to examine the influence of interacting disturbances on plant community dynamics; (2) use advances in disturbance and vegetation reconstructions, including ancient sedimentary DNA, to provide the spatial, temporal and taxonomic resolution needed to resolve the relationship between changing disturbance regimes and corresponding shifts in plant community composition; (3) integrate palaeoecological, archaeological and Indigenous knowledge to disentangle the complex interplay between climate, human land use, fire and vegetation structure; and (4) apply “functional palaeoecology” and the synergy between palaeoecology and genetics to understand how fire disturbance has served as a long‐standing selective agent on plants. These frameworks could increase the resolution of disturbance‐driven plant dynamics, potentially providing valuable information for future management. 
    more » « less
  4. Abstract Ecosystems in the North American Arctic-Boreal Zone (ABZ) experience a diverse set of disturbances associated with wildfire, permafrost dynamics, geomorphic processes, insect outbreaks and pathogens, extreme weather events, and human activity. Climate warming in the ABZ is occurring at over twice the rate of the global average, and as a result the extent, frequency, and severity of these disturbances are increasing rapidly. Disturbances in the ABZ span a wide gradient of spatiotemporal scales and have varying impacts on ecosystem properties and function. However, many ABZ disturbances are relatively understudied and have different sensitivities to climate and trajectories of recovery, resulting in considerable uncertainty in the impacts of climate warming and human land use on ABZ vegetation dynamics and in the interactions between disturbance types. Here we review the current knowledge of ABZ disturbances and their precursors, ecosystem impacts, temporal frequencies, spatial extents, and severity. We also summarize current knowledge of interactions and feedbacks among ABZ disturbances and characterize typical trajectories of vegetation loss and recovery in response to ecosystem disturbance using satellite time-series. We conclude with a summary of critical data and knowledge gaps and identify priorities for future study. 
    more » « less
  5. Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio‐environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high‐latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time‐series analysis of moderate—and high‐resolution imagery was used to characterize land‐ and water‐surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land‐surface greening, browning, and wetness/moisture trend parameters derived from peak‐growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km2) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface‐water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery processes following wildfire, timber harvesting, insect damage, thermokarst, glacial retreat, and lake infilling and drainage events. Our results fill a critical gap in the understanding of historical and potential future trajectories of change in northern high‐latitude regions. 
    more » « less