skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hang, Nguyen_T V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The presence of second-order smoothness for objective functions of optimization problems can provide valuable information about their stability properties and help us design efficient numerical algorithms for solving these problems. Such second-order information, however, cannot be expected in various constrained and composite optimization problems since we often have to express their objective functions in terms of extended-real-valued functions for which the classical second derivative may not exist. One powerful geometrical tool to use for dealing with such functions is the concept of twice epi-differentiability. In this paper, we study a stronger version of this concept, called strict twice epi-differentiability. We characterize this concept for certain composite functions and use it to establish the equivalence of metric regularity and strong metric regularity for a class of generalized equations at their nondegenerate solutions. Finally, we present a characterization of continuous differentiability of the proximal mapping of our composite functions. 
    more » « less
  2. Understanding the role that subgradients play in various second-order variational anal- ysis constructions can help us uncover new properties of important classes of functions in variational analysis. Focusing mainly on the behavior of the second subderivative and subgradient proto-derivative of polyhedral functions, i.e., functions with poly- hedral convex epigraphs, we demonstrate that choosing the underlying subgradient, utilized in the definitions of these concepts, from the relative interior of the subdif- ferential of polyhedral functions ensures stronger second-order variational properties such as strict twice epi-differentiability and strict subgradient proto-differentiability. This allows us to characterize continuous differentiability of the proximal mapping and twice continuous differentiability of the Moreau envelope of polyhedral functions. We close the paper with proving the equivalence of metric regularity and strong metric regularity of a class of generalized equations at their nondegenerate solutions. 
    more » « less