Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Block random access memories (BRAMs) are the storage houses of FPGAs, providing extensive on-chip memory bandwidth to the compute units implemented using logic blocks and digital signal processing slices. We propose modifying BRAMs to convert them to CoMeFa (Compute-in-Memory Blocks forFPGAs) random access memories (RAMs). These RAMs provide highly parallel compute-in-memory by combining computation and storage capabilities in one block. CoMeFa RAMs utilize the true dual-port nature of FPGA BRAMs and contain multiple configurable single-bit bit-serial processing elements. CoMeFa RAMs can be used to compute with any precision, which is extremely important for applications like deep learning (DL). Adding CoMeFa RAMs to FPGAs significantly increases their compute density while also reducing data movement. We explore and propose two architectures of these RAMs: CoMeFa-D (optimized for delay) and CoMeFa-A (optimized for area). Compared to existing proposals, CoMeFa RAMs do not require changing the underlying static RAM technology like simultaneously activating multiple wordlines on the same port, and are practical to implement. CoMeFa RAMs are especially suitable for parallel and compute-intensive applications like DL, but these versatile blocks find applications in diverse applications like signal processing and databases, among others. By augmenting an Intel Arria 10–like FPGA with CoMeFa-D (CoMeFa-A) RAMs at the cost of 3.8% (1.2%) area, and with algorithmic improvements and efficient mapping, we observe a geomean speedup of 2.55× (1.85×) across microbenchmarks from various applications and a geomean speedup of up to 2.5× across multiple deep neural networks. Replacing all or some BRAMs with CoMeFa RAMs in FPGAs can make them better accelerators of DL workloads.more » « less
-
The open-source and community-supported gem5 simulator is one of the most popular tools for computer architecture research. This simulation infrastructure allows researchers to model modern computer hardware at the cycle level, and it has enough fidelity to boot unmodified Linux-based operating systems and run full applications for multiple architectures including x86, Arm, and RISC-V. The gem5 simulator has been under active development over the last nine years since the original gem5 release. In this time, there have been over 7500 commits to the codebase from over 250 unique contributors which have improved the simulator by adding new features, fixing bugs, and increasing the code quality. In this paper, we give and overview of gem5's usage and features, describe the current state of the gem5 simulator, and enumerate the major changes since the initial release of gem5. We also discuss how the gem5 simulator has transitioned to a formal governance model to enable continued improvement and community support for the next 20 years of computer architecture research.more » « less