skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hanley, Jean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Paleoceanographic interpretations of Plio-Pleistocene climate variability over the past 5 million years rely on the evaluation of event timing of proxy changes in sparse records across multiple ocean basins. In turn, orbital-scale chronostratigraphic controls for these records are often built from stratigraphic alignment of benthic foraminiferal stable oxygen isotope (δ18O) records to a preferred dated target stack or composite. This chronostratigraphic age model approach yields age model uncertainties associated with alignment method, target selection, the assumption that the undated record and target experienced synchronous changes in benthic foraminiferal δ18O values, and the assumption that any possible stratigraphic discontinuities within the undated record have been appropriately identified. However, these age model uncertainties and their impact on paleoceanographic interpretations are seldom reported or discussed. Here, we investigate and discuss these uncertainties for conventional manual and automated tuning techniques based on benthic foraminiferal δ18O records and evaluate their impact on sedimentary age models over the past 3.5 Myr using three sedimentary benthic foraminiferal δ18O records as case studies. In one case study, we present a new benthic foraminiferal δ18O record for International Ocean Discovery Program (IODP) Site U1541 (54°13′ S, 125°25′ W), recently recovered from the South Pacific on IODP Expedition 383. The other two case studies examine published benthic foraminiferal δ18O records of Ocean Drilling Program (ODP) Site 1090 and the ODP Site 980/981 composite. Our analysis suggests average age uncertainties of 3 to 5 kyr associated with manually derived versus automated alignment, 1 to 3 kyr associated with automated probabilistic alignment itself, and 2 to 6 kyr associated with the choice of tuning target. Age uncertainties are higher near stratigraphic segment ends and where local benthic foraminiferal δ18O stratigraphy differs from the tuning target. We conclude with recommendations for community best practices for the development and characterization of age uncertainty of sediment core chronostratigraphies based on benthic foraminiferal δ18O records. 
    more » « less
  2. Abstract There is a consensus that volcanism along the East African Rift System (EARS) is related to plume activities. However, because of our limited knowledge of the local lithospheric mantle, the dynamics of the plume are poorly constrained by magma chemistry. The Turkana Basin is one of the best places to study plume‐related volcanism because the lithospheric mantle there is unusually thin. New Ar‐Ar geochronology and geochemical data on lavas from western Turkana show that Eocene volcanics have relatively low206Pb/204Pb (<19.1) and high εNd (>3.78). Their relatively high Ba/Rb (35–78) ratios suggest contributions from the shallow lithospheric mantle. Oligo‐Miocene Turkana volcanics have HIMU‐ and EMI‐ type enriched mantle signatures with overall lower Ba/Rb ratios, which is consistent with partial melting of plume material. Pliocene and younger Turkana volcanics have low Ba/Rb and Sr‐Nd‐Pb isotope ratios that resemble those of Ethiopian volcanics with elevated3He/4He ratios. This temporal variation can be reconciled with a layered plume model where an outer layer of ancient recycled oceanic crust and sediment overlies more primitive lower mantle material. Beneath Ethiopia, the outer layer of the plume is either missing or punctured by the delamination of the thicker overlying lithospheric mantle atca.30 Ma, an event that would have facilitated the rapid upwelling of the inner portion of the plume and triggered the Ethiopian flood volcanism. The outer layer of the plume may be thicker in the southern EARS, which could explain the occurrence of young HIMU‐ and EMI‐type volcanics with primordial noble gas signatures. 
    more » « less