- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Hansel, David (2)
-
Taillefumier, Thibaud (2)
-
Brager, Darrin (1)
-
Brager, Darrin H (1)
-
O’Shea, Ronan (1)
-
O’Shea, Ronan T (1)
-
Pattadkal, Jagruti (1)
-
Pattadkal, Jagruti J (1)
-
Priebe, Nicholas (1)
-
Priebe, Nicholas J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cortical neurons are characterized by their variable spiking patterns. Here, we examine the specific hypothesis that cortical synchrony drives spiking variability in vivo. Using dynamic clamps, we demonstrate that intrinsic neuronal properties do not contribute substantially to spiking variability, but rather spiking variability emerges from weakly synchronous network drive. With large-scale electrophysiology, we quantify the degree of synchrony and its timescale in cortical networks in vivo. The timescale of synchrony shifts in a range from 25 to 200 ms, depending on the presence of external sensory input. In particular, when the network moves from spontaneous to driven modes, the synchrony timescales shift from slow to fast, leading to a natural reduction in response variability across cortical areas. Finally, while an individual neuron exhibits reliable responses to physiological drive, different neurons respond in a distinct fashion according to their intrinsic properties, contributing to stable synchrony across the neural network.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Pattadkal, Jagruti; O’Shea, Ronan; Hansel, David; Taillefumier, Thibaud; Brager, Darrin; Priebe, Nicholas (, bioRxiv)
An official website of the United States government

Full Text Available