- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Harabor, Daniel (3)
-
Li, Jiaoyang (2)
-
Chan, Shao-Hung (1)
-
Chen, Zhe (1)
-
Gange, Graeme (1)
-
Hu, Shuli (1)
-
Koenig, Sven (1)
-
Liang, Runzhe (1)
-
Likhachev, Maxim (1)
-
Ma, Hang (1)
-
Stuckey, Peter (1)
-
Stuckey, Peter J (1)
-
Sturtevant, Nathan (1)
-
Veerapaneni, Rishi (1)
-
Zheng, Yi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The vast majority of Multi-Agent Path Finding (MAPF) methods with completeness guarantees require planning full-horizon paths. However, planning full-horizon paths can take too long and be impractical in real-world applications. Instead, real-time planning and execution, which only allows the planner a finite amount of time before executing and replanning, is more practical for real-world multi-agent systems. Several methods utilize real-time planning schemes but none are provably complete, which leads to livelock or deadlock. Our main contribution is Real-Time LaCAM, the first Real-Time MAPF method with provable completeness guarantees. We do this by leveraging LaCAM in an incremental fashion. Our results show how we can iteratively plan for congested environments with a cutoff time of milliseconds while still maintaining the same success rate as full-horizon LaCAM. We also show how it can be used with a single-step learned MAPF policy.more » « lessFree, publicly-accessible full text available July 20, 2026
-
Hu, Shuli; Harabor, Daniel; Gange, Graeme; Stuckey, Peter; Sturtevant, Nathan (, Proceedings of the International Conference on Automated Planning and Scheduling)Temporal Jump Point Search (JPST) is a recently introduced algorithm for grid-optimal pathfinding among dynamic temporal obstacles. In this work we consider JPST as a low-level planner in Multi-Agent Path Finding (MAPF). We investigate how the canonical ordering of JPST can negatively impact MAPF performance and we consider several strategies which allow us to overcome these limitations. Experiments show our new CBS/JPST approach can substantially improve on CBS/SIPP, a contemporary and leading method from the area.more » « less
-
Li, Jiaoyang; Chen, Zhe; Zheng, Yi; Chan, Shao-Hung; Harabor, Daniel; Stuckey, Peter J; Ma, Hang; Koenig, Sven (, Proceedings of the International Conference on Automated Planning and Scheduling)null (Ed.)Multi-Agent Path Finding (MAPF) is the combinatorial problem of finding collision-free paths for multiple agents on a graph. This paper describes MAPF-based software for solving train planning and replanning problems on large-scale rail networks under uncertainty. The software recently won the 2020 Flatland Challenge, a NeurIPS competition trying to determine how to efficiently manage dense traffic on rail networks. The software incorporates many state-of-the-art MAPF or, in general, optimization technologies, such as prioritized planning, large neighborhood search, safe interval path planning, minimum communication policies, parallel computing, and simulated annealing. It can plan collision-free paths for thousands of trains within a few minutes and deliver deadlock-free actions in real-time during execution.more » « less
An official website of the United States government

Full Text Available