- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Hariharan, Annapoorani (3)
-
Johnson, Christopher J. (2)
-
Ajello, Jack G (1)
-
Black, Samantha H (1)
-
Bordenca, Jake (1)
-
Boros, Eszter (1)
-
Bready, Conor J (1)
-
Eisenberg, Shawn (1)
-
Frederiks, Nicoline C. (1)
-
Johnson, Christopher J (1)
-
LaForest, Rochelle (1)
-
Shields, George C (1)
-
Whetter, Jennifer (1)
-
Śmiłowicz, Dariusz (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 30, 2025
-
Frederiks, Nicoline C.; Hariharan, Annapoorani; Johnson, Christopher J. (, Annual Review of Physical Chemistry)Atmospheric aerosols exert a significant but highly uncertain effect on the global climate, and roughly half of these particles originate as small clusters formed by collisions between atmospheric trace vapors. These particles typically consist of acids, bases, and water, stabilized by salt bridge formation and a network of strong hydrogen bonds. We review spectroscopic studies of this process, focusing on the clusters likely to be involved in the first steps of particle formation and the intermolecular interactions governing their stability. These studies typically focus on determining structure and stability and have shown that acid-base chemistry in the cluster may violate chemical intuition derived from solution-phase behavior and that hydration of these clusters is likely to be complex to describe. We also suggest fruitful areas for extension of these studies and alternative spectroscopic techniques that have not yet been applied to this problem.more » « less
-
Śmiłowicz, Dariusz; Eisenberg, Shawn; LaForest, Rochelle; Whetter, Jennifer; Hariharan, Annapoorani; Bordenca, Jake; Johnson, Christopher J.; Boros, Eszter (, Journal of the American Chemical Society)