skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harris, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The vertical transport of solid material in a stratified medium is fundamental to a number of environmental applications, with implications for the carbon cycle and nutrient transport in marine ecosystems. In this work, we study the diffusion-limited settling of highly porous particles in a density-stratified fluid through a combination of experiment, analysis, and numerical simulation. By delineating and appealing to the diffusion-limited regime wherein buoyancy effects due to mass adaptation dominate hydrodynamic drag, we derive a simple expression for the steady settling velocity of a sphere as a function of the density, size, and diffusivity of the solid, as well as the density gradient of the background fluid. In this regime, smaller particles settle faster, in contrast with most conventional hydrodynamic drag mechanisms. Furthermore, we outline a general mathematical framework for computing the steady settling speed of a body of arbitrary shape in this regime and compute exact results for the case of general ellipsoids. Using hydrogels as a highly porous model system, we validate the predictions with laboratory experiments in linear stratification for a wide range of parameters. Last, we show how the predictions can be applied to arbitrary slowly varying background density profiles and demonstrate how a measured particle position over time can be used to reconstruct the background density profile. 
    more » « less
    Free, publicly-accessible full text available June 24, 2026
  2. We study the rebound of drops impacting non-wetting substrates at low Weber number (We) through experiment, direct numerical simulation and reduced-order modelling. Submillimetre-sized drops are normally impacted onto glass slides coated with a thin viscous film that allows them to rebound without contact line formation. Experiments are performed with various drop viscosities, sizes and impact velocities, and we directly measure metrics pertinent to spreading, retraction and rebound using high-speed imaging. We complement experiments with direct numerical simulation and a fully predictive reduced-order model that applies natural geometric and kinematic constraints to simulate the drop shape and dynamics using a spectral method. At low We, drop rebound is characterised by a weaker dependence of the coefficient of restitution on We than in the more commonly studied high-We regime, with nearly We-independent rebound in the inertio-capillary limit, and an increasing contact time as We decreases. Drops with higher viscosity or size interact with the substrate longer, have a lower coefficient of restitution and stop bouncing sooner, in good quantitative agreement with our reduced-order model. In the inertio-capillary limit, low-We rebound has nearly symmetric spreading and retraction phases and a coefficient of restitution near unity. Increasing We or viscosity breaks this symmetry, coinciding with a drop in the coefficient of restitution and an increased dependence on We. Lastly, the maximum drop deformation and spreading are related through energy arguments, providing a comprehensive framework for drop impact and rebound at low We. 
    more » « less
    Free, publicly-accessible full text available September 25, 2026
  3. We present an experimental study of capillary surfers, a new fluid-mediated active system that bridges the gap between dissipation- and inertia-dominated regimes. Surfers are wave-driven particles that self-propel and interact on a fluid interface via an extended field of surface waves. A surfer's speed and interaction with its environment can be tuned broadly through the particle, fluid, and vibration parameters. The wave nature of interactions among surfers allows for multistability of interaction modes and promises a number of novel collective behaviors. 
    more » « less
  4. The rebound of droplets impacting a deep fluid bath is studied both experimentally and theoretically. Millimetric drops are generated using a piezoelectric droplet-on-demand generator and normally impact a bath of the same fluid. Measurements of the droplet trajectory and other rebound metrics are compared directly with the predictions of a linear quasipotential model, as well as fully resolved direct numerical simulations of the unsteady Navier–Stokes equations. Both models resolve the time-dependent bath and droplet shapes in addition to the droplet trajectory. In the quasipotential model, the droplet and bath shape are decomposed using orthogonal function decompositions leading to two sets of coupled damped linear harmonic oscillator equations solved using an implicit numerical method. The underdamped dynamics of the drop are directly coupled to the response of the bath through a single-point kinematic match condition which we demonstrate to be an effective and efficient model in our parameter regime of interest. Starting from the inertio-capillary limit in which both gravitational and viscous effects are negligible, increases in gravity or viscosity lead to a decrease in the coefficient of restitution and an increase in the contact time. The inertio-capillary limit defines an upper bound on the possible coefficient of restitution for droplet–bath impact, depending only on the Weber number. The quasipotential model is able to rationalize historical experimental measurements for the coefficient of restitution, first presented by Jayaratne & Mason ( Proc. R. Soc. Lond. A, vol. 280, issue 1383, 1964, pp. 545–565). 
    more » « less
  5. We study the axisymmetric impact of a rigid sphere onto an elastic membrane theoretically and experimentally. We derive governing equations from first principles and impose natural kinematic and geometric constraints for the coupled motion of the sphere and the membrane during contact. The free-boundary problem of finding the contact surface, over which forces caused by the collision act, is solved by an iterative method. This results in a model that produces detailed predictions of the trajectory of the sphere, the deflection of the membrane, and the pressure distribution during contact. Our model predictions are validated against our direct experimental measurements. Moreover, we identify new phenomena regarding the behaviour of the coefficient of restitution for low impact velocities, the possibility of multiple contacts during a single rebound, and energy recovery on subsequent bounces. Insight obtained from this model problem in contact mechanics can inform ongoing efforts towards the development of predictive models for contact problems that arise naturally in multiple engineering applications. 
    more » « less
  6. Liquid lithography represents a robust technique for fabricating three-dimensional (3D) microstructures on a two-dimensional template. Silanization of a surface is often a key step in the liquid lithography process and is used to alter the surface energy of the substrate and, consequently, the shape of the 3D microfeatures produced. In this work, we present a passive technique that allows for the generation of silane gradients along the length of a substrate. The technique relies on a secondary diffusion chamber with a single opening, leading to a directional introduction of silane to the substrate via passive diffusion. The secondary chamber geometry influences the deposited gradient, which is shown to be well captured by Monte Carlo simulations that incorporate the passive diffusion and grafting processes. The technique ultimately allows the user to generate a range of substrate wettabilities on a single chip, enhancing throughput for organ-on-a-chip applications by mimicking the spatial variability of tissue topographies present in vivo. 
    more » « less
  7. null (Ed.)