- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cobb, Alexander_R (1)
-
Harvey, Charles_F (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Peatlands cover many low‐lying areas in the tropics. Tropical peatlands are intriguing systems because of their tight coupling between hydrology and carbon storage: They accumulate carbon over thousands of years because of waterlogging, and they remain waterlogged after growing into domed shapes because peat restricts drainage. This feedback between waterlogging and landscape morphology generates landforms with special hydrologic properties that enable simplifications of standard watershed models. In natural tropical peatlands, the water table is always near the surface and infiltration is almost immediate. In addition, water table fluctuations relative to the peat surface are remarkably uniform across tropical peatlands because these peatlands acquire shapes with a uniform topographic wetness index. In this paper, we show that because of these distinctive properties, simple hydrologic models that represent the hydraulic state of a catchment by a scalar quantity that describes total water storage are useful and physically meaningful in tropical peatlands. We demonstrate how to efficiently derive hillslope‐scale parameterizations of transmissivity and specific yield as functions of water table height for a tropical peatland from water table, rainfall, and topographic data. Our findings suggest that natural tropical peatland subcatchments could be usefully modeled as single hydrologic response units for river flow and flood forecasting.more » « less
An official website of the United States government
