Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Oxidized iron (Fe) can reduce seagrass dieback when present in sufficient quantities in the sediment to fix sulfide as pyrite (FeS2) or iron monosulfide (FeS). However, the oxidized Fe pool may become depleted over time as Fe is reduced and precipitated with sulfides. In this study, we estimated long-term variations in the speciation of solid forms of reduced and oxidized Fe along a eutrophication gradient in West Falmouth Harbor (WFH) (a temperate lagoon with substantial seagrass meadows) and conducted a 6-week microcosm study to assess the role of oxidized Fe in supporting seagrass recovery. We planted seagrass in sediments obtained from 2 WFH regions with differing Fe speciation. We found depletion of oxidized Fe over a decade following a seagrass dieback, even when the soluble sulfide levels decreased to concentrations unlikely to cause toxicity in seagrass. The continued absence of large concentrations of available oxidized Fe minerals in sediments, where most Fe was bound in FeS2, could impede the recovery of seagrass in formerly vegetated regions. Seagrass grown in sediments with low Fe:S ratios exhibited an increased probability of survival after 4 weeks. Field and laboratory results indicated that even when the soluble sulfide levels decrease after seagrass dieback, sediments may not be able to support seagrass recovery due to the legacy effects of eutrophication on the sediment Fe pool. However, we observed signs of reoxidation in the Fe pool within a few years of seagrass dieback, including a decrease in the total sediment S concentration, which could help spur recolonization.more » « less
-
Abstract Reduced light is one of the primary threats to seagrass meadows in the coming decades, with reduced light reaching the benthos due to eutrophication. We assessed a multispectral photography technique using near‐infrared photography to estimate chlorophyll content in the seagrassZostera marina. Using near‐infrared and red wavelength cameras in the lab environment, we measured normalized difference vegetation index (NDVI) in photographs of sampled seagrass leaves. In samples taken from three different environments, we found a positive correlation between lab‐based NDVI and chlorophyll content, with variation attributable to leaf age. In samples grown under different light conditions, we found high levels of NDVI associated with lower light possibly due to seagrass photoacclimation. This method may be used in addition to existing seagrass monitoring methods to collect data on seagrass photic status and estimate chlorophyll content, and detect possible light limitation due to turbidity or high epibiota cover. The relatively low cost and time required for this method may make it useful where researchers are already collecting and imaging seagrass as part of routine monitoring.more » « less
An official website of the United States government
