skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hawkes, Andrea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, exacerbated locally by factors like land subsidence from groundwater and resource extraction. However, a process rarely considered in future sea-level rise scenarios is sudden (over minutes) land subsidence associated with great (>M8) earthquakes, which can exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal subsidence, dramatically raising sea level, expanding floodplains, and increasing the flood risk to local communities. Here, we quantify the potential expansion of the 1 % floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium (~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estuaries. If a great earthquake occurred today, floodplains could expand by 90 km² (low), 160 km² (medium), or 300 km² (high subsidence), more than doubling the flooding exposure of residents, structures, and roads under the high subsidence scenario. By 2100, when climate-driven sea-level rise will compound the hazard, a great earthquake could expand floodplains by 170 km² (low), 240 km² (medium), or 370 km² (high subsidence), more than tripling the flooding exposure of residents, structures, and roads under the high subsidence scenario compared to the 2023 floodplain. Our findings can support decision makers and coastal communities along the Cascadia subduction zone as they prepare for compound hazards from earthquake-cycle and climate-driven sea-level rise, and provide critical insights for tectonically active coastlines globally. 
    more » « less
    Free, publicly-accessible full text available April 28, 2026
  2. Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, exacerbated locally by factors like land subsidence from groundwater and resource extraction. However, a process rarely considered in future sea-level rise scenarios is sudden (over minutes) land subsidence associated with great (>M8) earthquakes, which can exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal subsidence, dramatically raising sea level, expanding floodplains, and increasing the flood risk to local communities. Here, we quantify the potential expansion of the 1% floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium (~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estuaries. If a great earthquake occurred today, floodplains could expand by 90 km2(low), 160 km2(medium), or 300 km2(high subsidence), more than doubling the flooding exposure of residents, structures, and roads under the high subsidence scenario. By 2100, when climate-driven sea-level rise will compound the hazard, a great earthquake could expand floodplains by 170 km2(low), 240 km2(medium), or 370 km2(high subsidence), more than tripling the flooding exposure of residents, structures, and roads under the high subsidence scenario compared to the 2023 floodplain. Our findings can support decision-makers and coastal communities along the Cascadia subduction zone as they prepare for compound hazards from the earthquake cycle and climate-driven sea-level rise and provide critical insights for tectonically active coastlines globally. 
    more » « less
    Free, publicly-accessible full text available May 6, 2026
  3. Tropical cyclone (TC) models indicate that continued planet warming will likely increase the global proportion of powerful TCs (specifically Categories 4 and 5 hurricanes), increasingly jeopardizing low-lying coastal communities and resources such as the Pelican Cays, Belize. The combination of increased coastal development and continued relative sea-level rise puts these communities at even higher risk of damage from TCs. The short TC observational record for the western Caribbean hampers the extensive study of TC activity on centennial timescales, which hinders our ability to fully understand past TC climatology and improve the accuracy of TC models. To better assess TC risk, paleotempestological studies are necessary to put future scenarios in perspective. Here, we present a high-resolution reconstruction of coarser-grained sediment deposits associated with TC (predominately ≥ Category 2 hurricanes) passages over the past 1200 years from Elbow and Lagoon Cays, two coral reef-bounded lagoons at the northern and southern end of the Pelican Cays; the most southern Belizean paleotempestological site to date. Coincident timing of historic storms with statistically significant coarser-grained deposits within cay lagoon sediment cores allows us to determine which historic TCs likely generated event layers (tempestites) archived in the sediment record. Our compilation frequency analysis indicates one active interval (above-normal TC activity) from 1740-1950 CE and one quiet interval (below-normal TC activity) from 850-1018 CE. The active and quiet intervals in the Pelican Cays composite record are anticorrelated with those from nearby and re-analyzed TC records to the north, including the Great Blue Hole (∼100 km north) and the Northeast Yucatan (∼380 km northwest). This site-specific anticorrelation in TC activity along the western Caribbean indicates that we cannot rely on any one single TC record to represent regional TC activity. However, we cannot discount that these anticorrelated periods between the western Caribbean sites are due to randomness. To confirm that the anticorrelation in TC activity among sites from the western Caribbean is indeed a function of climate change and not randomness, an integration of more records and TC model simulations over the past millennium is necessary to assess the significance of centennial-scale variability in TC activity recorded in reconstructions from the western Caribbean. 
    more » « less
  4. Abstract Lithology and microfossil biostratigraphy beneath the marshes of a central Oregon estuary limit geophysical models of Cascadia megathrust rupture during successive earthquakes by ruling out >0.5 m of coseismic coastal subsidence for the past 2000 yr. Although the stratigraphy in cores and outcrops includes as many as 12 peat-mud contacts, like those commonly inferred to record subsidence during megathrust earthquakes, mapping, qualitative diatom analysis, foraminiferal transfer function analysis, and 14C dating of the contacts failed to confirm that any contacts formed through subsidence during great earthquakes. Based on the youngest peat-mud contact’s distinctness, >400 m distribution, ∼0.6 m depth, and overlying probable tsunami deposit, we attribute it to the great 1700 CE Cascadia earthquake and(or) its accompanying tsunami. Minimal changes in diatom assemblages from below the contact to above its probable tsunami deposit suggest that the lower of several foraminiferal transfer function reconstructions of coseismic subsidence across the contact (0.1–0.5 m) is most accurate. The more limited stratigraphic extent and minimal changes in lithology, foraminifera, and(or) diatom assemblages across the other 11 peat-mud contacts are insufficient to distinguish them from contacts formed through small, gradual, or localized changes in tide levels during river floods, storm surges, and gradual sea-level rise. Although no data preclude any contacts from being synchronous with a megathrust earthquake, the evidence is equally consistent with all contacts recording relative sea-level changes below the ∼0.5 m detection threshold for distinguishing coseismic from nonseismic changes. 
    more » « less