- Award ID(s):
- 1755125
- PAR ID:
- 10316675
- Date Published:
- Journal Name:
- Geosphere
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1553-040X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Stratigraphic, lithologic, foraminiferal, and radiocarbon analyses indicate that at least four abrupt mud-over-peat contacts are recorded across three sites (Jacoby Creek, McDaniel Creek, and Mad River Slough) in northern Humboldt Bay, California, USA (∼44.8°N, −124.2°W). The stratigraphy records subsidence during past megathrust earthquakes at the southern Cascadia subduction zone ∼40 km north of the Mendocino Triple Junction. Maximum and minimum radiocarbon ages on plant macrofossils from above and below laterally extensive (>6 km) contacts suggest regional synchroneity of subsidence. The shallowest contact has radiocarbon ages that are consistent with the most recent great earthquake at Cascadia, which occurred at 250 cal yr B.P. (1700 CE). Using Bchron and OxCal software, we model ages for the three older contacts of ca. 875 cal yr B.P., ca. 1120 cal yr B.P., and ca. 1620 cal yr B.P. For each of the four earthquakes, we analyze foraminifera across representative mud-over-peat contacts selected from McDaniel Creek. Changes in fossil foraminiferal assemblages across all four contacts reveal sudden relative sea-level (RSL) rise (land subsidence) with submergence lasting from decades to centuries. To estimate subsidence during each earthquake, we reconstructed RSL rise across the contacts using the fossil foraminiferal assemblages in a Bayesian transfer function. The coseismic subsidence estimates are 0.85 ± 0.46 m for the 1700 CE earthquake, 0.42 ± 0.37 m for the ca. 875 cal yr B.P. earthquake, 0.79 ± 0.47 m for the ca. 1120 cal yr B.P. earthquake, and ≥0.93 m for the ca. 1620 cal yr B.P. earthquake. The subsidence estimate for the ca. 1620 cal yr B.P. earthquake is a minimum because the pre-subsidence paleoenvironment likely was above the upper limit of foraminiferal habitation. The subsidence estimate for the ca. 875 cal yr B.P. earthquake is less than (<50%) the subsidence estimates for other contacts and suggests that subsidence magnitude varied over the past four earthquake cycles in southern Cascadia.more » « less
-
Abstract Coastal subsidence, dating of plant remains and tree rings, and evidence for tsunami inundation point to coseismic activity on a sizable portion of the Cascadia subduction zone around three centuries ago. A tsunami of remote origin in 1700 C.E., probably from Cascadia, caused flooding and damage in Japan. In previous modeling, this transpacific evidence was found most simply explained by one Cascadia rupture about 1,000 km long. Here I model tens of thousands of ruptures and simulate their subsidence and tsunami signals and show that it is possible that the earthquake was part of a sequence of several events. Partial rupture of ∼400 km offshore southern Oregon and northern California in one large M ≥ 8.7 earthquake can explain the tsunami in Japan without conflicting with the subsidence. As many as four more earthquakes with M ≤ 8.7 can complete the subsidence signal without their tsunamis being large enough to be recorded in Japan. The purpose of this study is not to find a single, most likely, scenario or disprove the single‐rupture hypothesis favored by alternative evidence such as turbidites. Rather, it demonstrates that a multiple rupture sequence may explain part of the available data, and therefore cannot be discounted. Given the gaps in the presently available estimates of subsidence it is also possible that segments of the megathrust, for example from Copalis to the Strait of Juan de Fuca, did not rupture in 1700. The findings have significant implications for Cascadia geodynamics and how earthquake and tsunami hazards in the region are quantified.
-
Abstract From California to British Columbia, the Pacific Northwest coast bears an omnipresent earthquake and tsunami hazard from the Cascadia subduction zone. Multiple lines of evidence suggests that magnitude eight and greater megathrust earthquakes have occurred ‐ the most recent being 321 years ago (i.e., 1700 A.D.). Outstanding questions for the next great megathrust event include where it will initiate, what conditions are favorable for rupture to span the convergent margin, and how much slip may be expected. We develop the first 3‐D fully dynamic rupture simulations for the Cascadia subduction zone that are driven by fault stress, strength and friction to address these questions. The initial dynamic stress drop distribution in our simulations is constrained by geodetic coupling models, with segment locations taken from geologic analyses. We document the sensitivity of nucleation location and stress drop to the final seismic moment and coseismic subsidence amplitudes. We find that the final earthquake size strongly depends on the amount of slip deficit in the central Cascadia region, which is inferred to be creeping interseismically, for a given initiation location in southern or northern Cascadia. Several simulations are also presented here that can closely approximate recorded coastal subsidence from the 1700 A.D. event without invoking localized high‐stress asperities along the down‐dip locked region of the megathrust. These results can be used to inform earthquake and tsunami hazards for not only Cascadia, but other subduction zones that have limited seismic observations but a wealth of geodetic inference.
-
Abstract Despite a lack of modern large earthquakes on shallowly dipping normal faults, Holocene M w > 7 low-angle normal fault (LANF; dip<30°) ruptures are preserved paleoseismically and inferred from historical earthquake and tsunami accounts. Even in well-recorded megathrust earthquakes, the effects of non-linear off-fault plasticity and dynamically reactivated splay faults on shallow deformation and surface displacements, and thus hazard, remain elusive. We develop data-constrained 3D dynamic rupture models of the active Mai’iu LANF that highlight how multiple dynamic shallow deformation mechanisms compete during large LANF earthquakes. We show that shallowly-dipping synthetic splays host more coseismic slip and limit shallow LANF rupture more than steeper antithetic splays. Inelastic hanging-wall yielding localizes into subplanar shear bands indicative of newly initiated splay faults, most prominently above LANFs with thick sedimentary basins. Dynamic splay faulting and sediment failure limit shallow LANF rupture, modulating coseismic subsidence patterns, near-shore slip velocities, and the seismic and tsunami hazards posed by LANF earthquakes.more » « less
-
Abstract At subduction zones, the down‐dip limit of slip represents how deep an earthquake can rupture. For hazards it is important ‐ it controls the intensity of shaking and the pattern of coseismic uplift and subsidence. In the Cascadia Subduction Zone, because no large magnitude events have been observed in instrumental times, the limit is inferred from geological estimates of coastal subsidence during previous earthquakes; it is typically assumed to coincide approximately with the coastline. This is at odds with geodetic coupling models as it leaves residual slip deficits unaccommodated on a large swath of the megathrust. Here we will show that ruptures can penetrate deeper into the megathrust and still produce coastal subsidence provided slip decreases with depth. We will discuss the impacts of this on expected shaking intensities.