Chemical Cartography, or mapping, of our Galaxy has the potential to fully transform our view of its structure and formation. In this work, we use chemical cartography to explore the metallicity distribution of OBAF-type disc stars from the LAMOST survey and a complementary sample of disc giant stars from Gaia DR3. We use these samples to constrain the radial and vertical metallicity gradients across the Galactic disc. We also explore whether there are detectable azimuthal variations in the metallicity distribution on top of the radial gradient. For the OBAF-type star sample from LAMOST, we find a radial metallicity gradient of Δ[Fe/H]/ΔR ∼−0.078 ± 0.001 dex kpc−1 in the plane of the disc and a vertical metallicity gradient of Δ[Fe/H]/ΔZ ∼−0.15 ± 0.01 dex kpc−1 in the solar neighbourhood. The radial gradient becomes shallower with increasing vertical height, while the vertical gradient becomes shallower with increasing Galactocentric radius, consistent with other studies. We also find detectable spatially dependent azimuthal variations on top of the radial metallicity gradient at the level of ∼0.10 dex. Interestingly, the azimuthal variations appear be close to the Galactic spiral arms in one data set (Gaia DR3) but not the other (LAMOST). These results suggest that there is azimuthal structure in the Galactic metallicity distribution and that in some cases it is co-located with spiral arms.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chemical cartography with LAMOST and Gaia reveal azimuthal and spiral structure in the Galactic disc
ABSTRACT -
ABSTRACT Carbon-enhanced metal-poor (CEMP) stars comprise almost a third of stars with [Fe/H] < −2, although their origins are still poorly understood. It is highly likely that one sub-class (CEMP-s stars) is tied to mass-transfer events in binary stars, while another sub-class (CEMP-no stars) are enriched by the nucleosynthetic yields of the first generations of stars. Previous studies of CEMP stars have primarily concentrated on the Galactic halo, but more recently they have also been detected in the thick disc and bulge components of the Milky Way. Gaia DR3 has provided an unprecedented sample of over 200 million low-resolution (R ≈ 50) spectra from the BP and RP photometers. Training on the CEMP catalogue from the SDSS/SEGUE database, we use XGBoost to identify the largest all-sky sample of CEMP candidate stars to date. In total, we find 58 872 CEMP star candidates, with an estimated contamination rate of 12 per cent. When comparing to literature high-resolution catalogues, we positively identify 60–68 per cent of the CEMP stars in the data, validating our results and indicating a high completeness rate. Our final catalogue of CEMP candidates spans from the inner to outer Milky Way, with distances as close as r ∼ 0.8 kpc from the Galactic centre, and as far as r > 30 kpc. Future higher resolution spectroscopic follow-up of these candidates will provide validations of their classification and enable investigations of the frequency of CEMP-s and CEMP-no stars throughout the Galaxy, to further constrain the nature of their progenitors.
-
Abstract Observations of the Milky Way’s low- α disk show that several element abundances correlate with age at fixed metallicity, with unique slopes and small scatters around the age–[X/Fe] relations. In this study, we turn to simulations to explore the age–[X/Fe] relations for the elements C, N, O, Mg, Si, S, and Ca that are traced in a FIRE-2 cosmological zoom-in simulation of a Milky Way–like galaxy, m12i, and understand what physical conditions give rise to the observed age–[X/Fe] trends. We first explore the distributions of mono-age populations in their birth and current locations, [Fe/H], and [X/Fe], and find evidence for inside-out radial growth for stars with ages <7 Gyr. We then examine the age–[X/Fe] relations across m12i’s disk and find that the direction of the trends agrees with observations, apart from C, O, and Ca, with remarkably small intrinsic scatters, σ int (0.01 − 0.04 dex). This σ int measured in the simulations is also metallicity dependent, with σ int ≈ 0.025 dex at [Fe/H] = −0.25 dex versus σ int ≈ 0.015 dex at [Fe/H] = 0 dex, and a similar metallicity dependence is seen in the GALAH survey for the elements in common. Additionally, we find that σ int is higher in the inner galaxy, where stars are older and formed in less chemically homogeneous environments. The age–[X/Fe] relations and the small scatter around them indicate that simulations capture similar chemical enrichment variance as observed in the Milky Way, arising from stars sharing similar element abundances at a given birth place and time.more » « lessFree, publicly-accessible full text available January 1, 2024
-
ABSTRACT We present a novel method for constraining the length of the Galactic bar using 6D phase-space information to directly integrate orbits. We define a pseudo-length for the Galactic bar, named RFreq, based on the maximal extent of trapped bar orbits. We find the RFreq measured from orbits is consistent with the RFreq of the assumed potential only when the length of the bar and pattern speed of said potential is similar to the model from which the initial phase-space coordinates of the orbits are derived. Therefore, one can measure the model’s or the Milky Way’s bar length from 6D phase-space coordinates by determining which assumed potential leads to a self-consistent measured RFreq. When we apply this method to ≈210 000 stars in APOGEE DR17 and Gaia eDR3 data, we find a consistent result only for potential models with a dynamical bar length of ≈3.5 kpc. We find the Milky Way’s trapped bar orbits extend out to only ≈3.5 kpc, but there is also an overdensity of stars at the end of the bar out to 4.8 kpc which could be related to an attached spiral arm. We also find that the measured orbital structure of the bar is strongly dependent on the properties of the assumed potential.
-
Abstract Stellar streams in the Galactic halo are useful probes of the assembly of galaxies like the Milky Way. Many tidal stellar streams that have been found in recent years are accompanied by a known progenitor globular cluster or dwarf galaxy. However, the Orphan–Chenab (OC) stream is one case where a relatively narrow stream of stars has been found without a known progenitor. In an effort to find the parent of the OC stream, we use astrometry from the early third data release of ESA’s Gaia mission (Gaia EDR3) and radial velocity information from the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to find up to 13 stars that are likely members of the OC stream. We use the APOGEE survey to study the chemical nature (for up to 10 stars) of the OC stream in the
α (O, Mg, Ca, Si, Ti, and S), odd-Z (Al, K, and V), Fe-peak (Fe, Ni, Mn, Co, and Cr), and neutron-capture (Ce) elemental groups. We find that the stars that make up the OC stream are not consistent with a monometallic population and have a median metallicity of −1.92 dex with a dispersion of 0.28 dex. Our results also indicate that the α elements are depleted compared to the known Milky Way populations and that its [Mg/Al] abundance ratio is not consistent with second-generation stars from globular clusters. The detailed chemical pattern of these stars, namely the [α /Fe]–[Fe/H] plane and the metallicity distribution, indicates that the OC stream progenitor is very likely to be a dwarf spheroidal galaxy with a mass of ∼106M ⊙. -
Abstract Phosphorus (P) is a critical element for life on Earth, yet the cosmic production sites of P are relatively uncertain. To understand how P has evolved in the solar neighborhood, we measured abundances for 163 FGK stars over a range of –1.09 < [Fe/H] < 0.47 using observations from the Habitable-zone Planet Finder instrument on the Hobby–Eberly Telescope. Atmospheric parameters were calculated by fitting a combination of astrometry, photometry, and Fe I line equivalent widths. Phosphorus abundances were measured by matching synthetic spectra to a P I feature at 10529.52 Å. Our [P/Fe] ratios show that chemical evolution models generally underpredict P over the observed metallicity range. Additionally, we find that the [P/Fe] differs by ∼0.1 dex between thin disk and thick disk stars that were identified with kinematics. The P abundances were compared with α -elements, iron-peak, odd-Z, and s-process elements, and we found that the evolution of P in the disk most strongly resembles that of the α -elements. We also find that molar P/C and N/C ratios for our sample match the scatter seen from other abundance studies. Finally, we measure a [P/Fe] = 0.09 ± 0.1 ratio in one low- α halo star and probable Gaia–Sausage–Enceladus member, an abundance ratio ∼0.3–0.5 dex lower than the other Milky Way disk and halo stars at similar metallicities. Overall, we find that P is likely most significantly produced by massive stars in core-collapse supernovae, based on the largest P abundance survey to date.more » « less
-
ABSTRACT Understanding the assembly of our Galaxy requires us to also characterize the systems that helped build it. In this work, we accomplish this by exploring the chemistry of accreted halo stars from Gaia-Enceladus/Gaia-Sausage (GES) selected in the infrared from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16. We use high resolution optical spectra for 62 GES stars to measure abundances in 20 elements spanning the α, Fe-peak, light, odd-Z, and notably, the neutron-capture groups of elements to understand their trends in the context of and in contrast to the Milky Way and other stellar populations. Using these derived abundances we find that the optical and the infrared abundances agree to within 0.15 dex except for O, Co, Na, Cu, and Ce. These stars have enhanced neutron-capture abundance trends compared to the Milky Way, and their [Eu/Mg] and neutron-capture abundance ratios (e.g. [Y/Eu], [Ba/Eu], [Zr/Ba], [La/Ba], and [Nd/Ba]) point to r-process enhancement and a delay in s-process enrichment. Their [α/Fe] trend is lower than the Milky Way trend for [Fe/H] > −1.5 dex, similar to previous studies of GES stars and consistent with the picture that these stars formed in a system with a lower rate of star formation. This is further supported by their depleted abundances in Ni, Na, and Cu abundances, again, similar to previous studies of low-α stars with accreted origins.
-
Abstract Little is known about the origin of the fastest stars in the Galaxy. Our understanding of the chemical evolution history of the Milky Way and surrounding dwarf galaxies allows us to use the chemical composition of a star to investigate its origin and to say whether it was formed in situ or was accreted. However, the fastest stars, the hypervelocity stars, are young and massive and their chemical composition has not yet been analyzed. Though it is difficult to analyze the chemical composition of a massive young star, we are well versed in the analysis of late-type stars. We have used high-resolution ARCES/3.5 m Apache Point Observatory, MIKE/Magellan spectra to study the chemical details of 15 late-type hypervelocity star candidates. With Gaia EDR3 astrometry and spectroscopically determined radial velocities we found total velocities with a range of 274–520 km s −1 and mean value of 381 km s −1 . Therefore, our sample stars are not fast enough to be classified as hypervelocity stars, and are what is known as extreme-velocity stars. Our sample has a wide iron abundance range of −2.5 ≤ [Fe/H] ≤ −0.9. Their chemistry indicates that at least 50% of them are accreted extragalactic stars, with iron-peak elements consistent with prior enrichment by sub-Chandrasekhar mass Type Ia supernovae. Without indication of binary companions, their chemical abundances and orbital parameters indicate that they are the accelerated tidal debris of disrupted dwarf galaxies.more » « less
-
ABSTRACT The advent of Gaia has led to the discovery of nearly 300 elongated stellar associations (called ‘strings’) spanning hundreds of parsecs in length and mere tens of parsecs in width. These newfound populations present an excellent laboratory for studying the assembly process of the Milky Way thin disc. In this work, we use data from GALAH DR3 to investigate the chemical distributions and ages of 18 newfound stellar populations, 10 of which are strings and 8 of which are compact in morphology. We estimate the intrinsic abundance dispersions in [X/H] of each population and compare them with those of both their local fields and the open cluster (OC) M 67. We find that all but one of these groups are more chemically homogeneous than their local fields. Furthermore, half of the strings, namely Theias 139, 169, 216, 303, and 309, have intrinsic [X/H] dispersions that range between 0.01 and 0.07 dex in most elements, equivalent to those of many OCs. These results provide important new observational constraints on star formation and the chemical homogeneity of the local interstellar medium (ISM). We investigate each population’s Li and chemical clock abundances (e.g. [Sc/Ba], [Ca/Ba], [Ti/Ba], and [Mg/Y]) and find that the ages suggested by chemistry generally support the isochronal ages in all but six structures. This work highlights the unique advantages that chemistry holds in the study of kinematically related stellar groups.