skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Chemical cartography with LAMOST and Gaia reveal azimuthal and spiral structure in the Galactic disc
ABSTRACT Chemical Cartography, or mapping, of our Galaxy has the potential to fully transform our view of its structure and formation. In this work, we use chemical cartography to explore the metallicity distribution of OBAF-type disc stars from the LAMOST survey and a complementary sample of disc giant stars from Gaia DR3. We use these samples to constrain the radial and vertical metallicity gradients across the Galactic disc. We also explore whether there are detectable azimuthal variations in the metallicity distribution on top of the radial gradient. For the OBAF-type star sample from LAMOST, we find a radial metallicity gradient of Δ[Fe/H]/ΔR ∼−0.078 ± 0.001 dex kpc−1 in the plane of the disc and a vertical metallicity gradient of Δ[Fe/H]/ΔZ ∼−0.15 ± 0.01 dex kpc−1 in the solar neighbourhood. The radial gradient becomes shallower with increasing vertical height, while the vertical gradient becomes shallower with increasing Galactocentric radius, consistent with other studies. We also find detectable spatially dependent azimuthal variations on top of the radial metallicity gradient at the level of ∼0.10 dex. Interestingly, the azimuthal variations appear be close to the Galactic spiral arms in one data set (Gaia DR3) but not the other (LAMOST). These results suggest that there is azimuthal structure in the Galactic metallicity distribution and that in some cases it is co-located with spiral arms.  more » « less
Award ID(s):
2108736 1907417
PAR ID:
10455465
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
525
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3318-3329
Size(s):
p. 3318-3329
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We characterize the 3D spatial variations of [Fe/H], [Mg/H], and [Mg/Fe] in stars at the time of their formation, across 11 simulated Milky Way (MW)- and M31-mass galaxies in the FIRE-2 simulations, to inform initial conditions for chemical tagging. The overall scatter in [Fe/H] within a galaxy decreased with time until $$\approx 7 \, \rm {Gyr}$$ ago, after which it increased to today: this arises from a competition between a reduction of azimuthal scatter and a steepening of the radial gradient in abundance over time. The radial gradient is generally negative, and it steepened over time from an initially flat gradient $$\gtrsim 12 \, \rm {Gyr}$$ ago. The strength of the present-day abundance gradient does not correlate with when the disc ‘settled’; instead, it best correlates with the radial velocity dispersion within the galaxy. The strength of azimuthal variation is nearly independent of radius, and the 360 deg scatter decreased over time, from $$\lesssim 0.17 \, \rm {dex}$$ at $$t_{\rm lb} = 11.6 \, \rm {Gyr}$$ to $$\sim 0.04 \, \rm {dex}$$ at present-day. Consequently, stars at $$t_{\rm lb} \gtrsim 8 \, \rm {Gyr}$$ formed in a disc with primarily azimuthal scatter in abundances. All stars formed in a vertically homogeneous disc, Δ[Fe/H]$$\le 0.02 \, \rm {dex}$$ within $$1 \, \rm {kpc}$$ of the galactic mid-plane, with the exception of the young stars in the inner $$\approx 4 \, \rm {kpc}$$ at z ∼ 0. These results generally agree with our previous analysis of gas-phase elemental abundances, which reinforces the importance of cosmological disc evolution and azimuthal scatter in the context of stellar chemical tagging. We provide analytic fits to our results for use in chemical-tagging analyses. 
    more » « less
  2. ABSTRACT Stellar radial migration plays an important role in reshaping a galaxy’s structure and the radial distribution of stellar population properties. In this work, we revisit reported observational evidence for radial migration and quantify its strength using the age–[Fe/H] distribution of stars across the Milky Way with APOGEE data. We find a broken age–[Fe/H] relation in the Galactic disc at r > 6 kpc, with a more pronounced break at larger radii. To quantify the strength of radial migration, we assume stars born at each radius have a unique age and metallicity, and then decompose the metallicity distribution function (MDF) of mono-age young populations into different Gaussian components that originated from various birth radii at rbirth < 13 kpc. We find that, at ages of 2 and 3 Gyr, roughly half the stars were formed within 1 kpc of their present radius, and very few stars (<5 per cent) were formed more than 4 kpc away from their present radius. These results suggest limited short-distance radial migration and inefficient long-distance migration in the Milky Way during the last 3 Gyr. In the very outer disc beyond 15 kpc, the observed age–[Fe/H] distribution is consistent with the prediction of pure radial migration from smaller radii, suggesting a migration origin of the very outer disc. We also estimate intrinsic metallicity gradients at ages of 2 and 3 Gyr of −0.061 and −0.063 dex kpc−1, respectively. 
    more » « less
  3. null (Ed.)
    ABSTRACT We use FIRE-2 simulations to examine 3D variations of gas-phase elemental abundances of [O/H], [Fe/H], and [N/H] in 11 MW and M31-mass galaxies across their formation histories at z ≤ 1.5 ($$t_{\rm lookback} \le 9.4 \, \rm {Gyr}$$), motivated by characterizing the initial conditions of stars for chemical tagging. Gas within $$1 \, \rm {kpc}$$ of the disc mid-plane is vertically homogeneous to $$\lesssim 0.008 \, \rm {dex}$$ at all z ≤ 1.5. We find negative radial gradients (metallicity decreases with galactocentric radius) at all times, which steepen over time from $$\approx \! -0.01 \, \rm {dex}\, \rm {kpc}^{-1}$$ at z = 1 ($$t_{\rm lookback} = 7.8 \, \rm {Gyr}$$) to $$\approx \! -0.03 \, \rm {dex}\, \rm {kpc}^{-1}$$ at z = 0, and which broadly agree with observations of the MW, M31, and nearby MW/M31-mass galaxies. Azimuthal variations at fixed radius are typically $$0.14 \, \rm {dex}$$ at z = 1, reducing to $$0.05 \, \rm {dex}$$ at z = 0. Thus, over time radial gradients become steeper while azimuthal variations become weaker (more homogeneous). As a result, azimuthal variations were larger than radial variations at z ≳ 0.8 ($$t_{\rm lookback} \gtrsim 6.9 \, \rm {Gyr}$$). Furthermore, elemental abundances are measurably homogeneous (to ≲0.05 dex) across a radial range of $$\Delta R \approx 3.5 \, \rm {kpc}$$ at z ≳ 1 and $$\Delta R \approx 1.7 \, \rm {kpc}$$ at z = 0. We also measure full distributions of elemental abundances, finding typically negatively skewed normal distributions at z ≳ 1 that evolve to typically Gaussian distributions by z = 0. Our results on gas abundances inform the initial conditions for stars, including the spatial and temporal scales for applying chemical tagging to understand stellar birth in the MW. 
    more » « less
  4. Context.The inner Galaxy is a complex environment, and the relative contributions of different formation scenarios to its observed morphology and stellar properties are still debated. The different components are expected to have different spatial, kinematic, and metallicity distributions, and a combination of photometric, spectroscopic, and astrometric large-scale surveys is needed to study the formation and evolution of the Galactic bulge. Aims.The Blanco DECam Bulge Survey (BDBS) provides near-ultraviolet to near-infrared photometry for approximately 250 million unique stars over more than 200 square degrees of the southern Galactic bulge. By combining BDBS photometry with the latestGaiaastrometry, we aim to characterize the chemodynamics of red clump stars across the BDBS footprint using an unprecedented sample size and sky coverage. Methods.Our field of view of interest is |ℓ| ≤ 10°, −10° ≤b ≤ −3°. We constructed a sample of approximately 2.3 million red clump giants in the bulge with photometric metallicities, BDBS photometric distances, and proper motions. Photometric metallicities are derived from a (u − i)0versus [Fe/H] relation; astrometry, including precise proper motions, is from the third data release (DR3) of the ESA satelliteGaia. We studied the kinematics of the red clump stars as a function of sky position and metallicity by investigating proper-motion rotation curves, velocity dispersions, and proper-motion correlations across the southern Galactic bulge. Results.By binning our sample into eight metallicity bins in the range of −1.5 dex < [Fe/H] < +1 dex, we find that metal-poor red clump stars exhibit lower rotation amplitudes, at ∼29 km s−1kpc−1. The peak of the angular velocity is ∼39 km s−1kpc−1for [Fe/H] ∼ −0.2 dex, exhibiting declining rotation at higher [Fe/H]. The velocity dispersion is higher for metal-poor stars, while metal-rich stars show a steeper gradient with Galactic latitude, with a maximum dispersion at low latitudes along the bulge minor axis. Only metal-rich stars ([Fe/H] ≳ −0.5 dex) show clear signatures of the bar in their kinematics, while the metal-poor population exhibits isotropic motions with an axisymmetric pattern around Galactic longitudeℓ = 0. Conclusions.This work describes the largest sample of bulge stars with distance, metallicity, and astrometry reported to date, and shows clear kinematic differences with metallicity. The global kinematics over the bulge agrees with earlier studies. However, we see striking changes with increasing metallicity, and, for the first time, kinematic differences for stars with [Fe/H]>  − 0.5, suggesting that the bar itself may have kinematics that depends on metallicity. 
    more » « less
  5. ABSTRACT We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $$\rm [Fe/H]\lt -0.3$$ and log10(P) ∼ −0.9 for $$\rm [Fe/H]\gt 0$$, which leads to a period-dependent scale height. Stars with $$P\gt 0.100\, \rm d$$ are predominantly located close to the Galactic disc ($$\rm |\mathit{ Z}|\lt 0.5\, kpc$$). The median period at a scale height of $$Z\sim 0\, \rm kpc$$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $$R\gt 9\, \rm kpc$$ to log10(P) ∼ −0.85 for sources with $$R\lt 7\, \rm kpc$$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discovered by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively. 
    more » « less