Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
This work revisits the classical low-rank matrix factorization problem and unveils the critical role of initialization in shaping convergence rates for such nonconvex and nonsmooth optimization. We introduce Nystrom initialization, which significantly improves the global convergence of Scaled Gradient Descent (ScaledGD) in both symmetric and asymmetric matrix factorization tasks. Specifically, we prove that ScaledGD with Nystrom initialization achieves quadratic convergence in cases where only linear rates were previously known. Furthermore, we extend this initialization to low-rank adapters (LoRA) commonly used for finetuning foundation models. Our approach, NoRA, i.e., LoRA with Nystrom initialization, demonstrates superior performance across various downstream tasks and model scales, from 1B to 7B parameters, in large language and diffusion models.more » « less
-
Dynamic mechanism design is a challenging extension to ordinary mechanism design in which the mechanism designer must make a sequence of decisions over time in the face of possibly untruthful reports of participating agents. Optimizing dynamic mechanisms for welfare is relatively well understood. However, there has been less work on optimizing for other goals (e.g. revenue), and without restrictive assumptions on valuations, it is remarkably challenging to characterize good mechanisms. Instead, we turn to automated mechanism design to find mechanisms with good performance in specific problem instances.We extend the class of affine maximizer mechanisms to MDPs where agents may untruthfully report their rewards. This extension results in a challenging bilevel optimization problem in which the upper problem involves choosing optimal mechanism parameters, and the lower problem involves solving the resulting MDP. Our approach can find truthful dynamic mechanisms that achieve strong performance on goals other than welfare, and can be applied to essentially any problem setting—without restrictions on valuations—for which RL can learn optimal policies.more » « less
An official website of the United States government

Full Text Available