skip to main content

Search for: All records

Creators/Authors contains: "He, Yangyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fitness trackers are undoubtedly gaining in popularity. As fitness-related data are persistently captured, stored, and processed by these devices, the need to ensure users’ privacy is becoming increasingly urgent. In this paper, we apply a data-driven approach to the development of privacy-setting recommendations for fitness devices. We first present a fitness data privacy model that we defined to represent users’ privacy preferences in a way that is unambiguous, compliant with the European Union’s General Data Protection Regulation (GDPR), and able to represent both the user and the third party preferences. Our crowdsourced dataset is collected using current scenarios in the fitness domain and used to identify privacy profiles by applying machine learning techniques. We then examine different personal tracking data and user traits which can potentially drive the recommendation of privacy profiles to the users. Finally, a set of privacy-setting recommendation strategies with different guidance styles are designed based on the resulting profiles. Interestingly, our results show several semantic relationships among users’ traits, characteristics, and attitudes that are useful in providing privacy recommendations. Even though several works exist on privacy preference modeling, this paper makes a contribution in modeling privacy preferences for data sharing and processing in the IoT andmore »fitness domain, with specific attention to GDPR compliance. Moreover, the identification of well-identified clusters of preferences and predictors of such clusters is a relevant contribution for user profiling and for the design of interactive recommendation strategies that aim to balance users’ control over their privacy permissions and the simplicity of setting these permissions.« less
  2. As IoT devices begin to permeate our environment, our interaction with these devices are starting to have a real potential to transform our daily lives. Therefore, there exists an incredible opportunity for intelligent user interfaces to simplify the task of controlling such devices. The goal of IUIoT workshop was to serve as a platform for researchers who are working towards the design of IoT systems from an intelligent, human-centered perspective. The workshop accepted a total of five papers: two position and three extended abstracts. These papers were presented by the authors and discussed among the workshop attendees with an aim of exploring future directions and improving existing approaches towards designing intelligent User Interfaces for IoT environments.
  3. Research has shown that privacy decisions are affected by heuristic influences such as default settings and framing, and such effects are likely also present in smarthome privacy de- cisions. In this paper we pose the challenge question: How exactly do defaults and framing influence smarthome users’ privacy decisions? We conduct a large-scale scenario-based study with a mixed fractional factorial design, and use sta- tistical analysis and machine learning to investigate these effects. We discuss the implications of our findings for the designers of smarthome privacy-setting interfaces.
  4. User testing is often used to inform the development of user interfaces (UIs). But what if an interface needs to be developed for a system that does not yet exist? In that case, existing datasets can provide valuable input for UI development. We apply a data-driven approach to the development of a privacy-setting interface for Internet-of-Things (IoT) devices. Applying machine learning techniques to an existing dataset of users' sharing preferences in IoT scenarios, we develop a set of "smart" default profiles. Our resulting interface asks users to choose among these profiles, which capture their preferences with an accuracy of 82%---a 14% improvement over a naive default setting and a 12% improvement over a single smart default setting for all users.