skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Yunyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tropical tree communities are among the most diverse in the world. A small number of genera often disproportionately contribute to this diversity. How so many species from a single genus can co‐occur represents a major outstanding question in biology. Niche differences are likely to play a major role in promoting congeneric diversity, but the mechanisms of interest are often not well‐characterized by the set of functional traits generally measured by ecologists.To address this knowledge gap, we used a functional genomic approach to investigate the mechanisms of co‐occurrence in the hyper‐diverse genusFicus. Our study focused on over 800 genes related to drought and defence, providing detailed information on how these genes may contribute to the diversity ofFicusspecies.We find widespread and consistent evidence of the importance of defence gene dissimilarity in co‐occurring species, providing genetic support for what would be expected under the Janzen‐Connell mechanism. We also find that drought‐related gene sequence similarity is related toFicusco‐occurrence, indicating that similar responses to drought promote co‐occurrence.Synthesis. We provide the first detailed functional genomic evidence of how drought‐ and defence‐related genes simultaneously contribute to the local co‐occurrence in a hyper‐diverse genus. Our results demonstrate the potential of community transcriptomics to identify the drivers of species co‐occurrence in hyper‐diverse tropical tree genera. 
    more » « less
  2. Thrall, Peter H. (Ed.)
    Abstract Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co‐occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant–herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests. 
    more » « less