skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hecht, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigated the effects of storm‐time diffuse auroral electron precipitation on ionospheric Pedersen and Hall conductivity and conductance during the CME‐driven St. Patrick's Day storms of 2013 (minDst = −131 nT) and 2015 (minDst = −233 nT). These storms were simulated using the magnetically and electrically self‐consistent RCM‐E model with STET modifications, alongside the B3C auroral transport code to compute ionospheric conductivities and height‐integrated conductance. The simulation results were validated against conductance inferred from Poker Flat Incoherent Scatter Radar (PFISR) and Millstone Hill Incoherent Scatter Radar (MHISR) measurements. Our simulations show that the magnetic latitude and local time distribution of Pedersen and Hall auroral conductance strongly correlate with diffuse electron precipitation flux, with the plasmapause marking the low‐latitude boundary of conductance. Simulated Pedersen/Hall conductance agrees reasonably well with PFISR measurements at 65.9° MLAT during diffuse auroral precipitation. During the intense 2015 storm, diffuse aurora extended down to 52.5° MLAT, with simulated conductance agreeing within a factor of two with MHISR observations. Discrete auroral arcs observed during both storms enhanced PFISR conductance by tens of siemens, though these enhancements were not captured by the model. Additionally, the simulated electric intensity showed development of sub‐auroral polarization streams (SAPS) and dawn SAPS features and followed the general trend of Poker Flat electric intensity at 65.9° MLAT during diffuse aurora, despite being updated every 5 min. The overall agreement between simulated ionospheric conductance and electric intensity with observations highlights the model's capability during diffuse auroral precipitation. 
    more » « less
  2. Recent attention has been given to mesoscale phenomena across geospace (∼10 s km to 500 km in the ionosphere or ∼0.5 R E to several R E in the magnetosphere), as their contributions to the system global response are important yet remain uncharacterized mostly due to limitations in data resolution and coverage as well as in computational power. As data and models improve, it becomes increasingly valuable to advance understanding of the role of mesoscale phenomena contributions—specifically, in magnetosphere-ionosphere coupling. This paper describes a new method that utilizes the 2D array of Time History of Events and Macroscale Interactions during Substorms (THEMIS) white-light all-sky-imagers (ASI), in conjunction with meridian scanning photometers, to estimate the auroral scale sizes of intense precipitating energy fluxes and the associated Hall conductances. As an example of the technique, we investigated the role of precipitated energy flux and average energy on mesoscales as contrasted to large-scales for two back-to-back substorms, finding that mesoscale aurora contributes up to ∼80% (∼60%) of the total energy flux immediately after onset during the early expansion phase of the first (second) substorm, and continues to contribute ∼30–55% throughout the remainder of the substorm. The average energy estimated from the ASI mosaic field of view also peaked during the initial expansion phase. Using the measured energy flux and tables produced from the Boltzmann Three Constituent (B3C) auroral transport code (Strickland et al., 1976; 1993), we also estimated the 2D Hall conductance and compared it to Poker Flat Incoherent Scatter Radar conductance values, finding good agreement for both discrete and diffuse aurora. 
    more » « less
  3. Abstract Multiple recent observations in the mesosphere have revealed large-scale Kelvin–Helmholtz instabilities (KHI) exhibiting diverse spatial features and temporal evolutions. The first event reported by Hecht et al. exhibited multiple features resembling those seen to arise in early laboratory shear-flow studies described as “tube” and “knot” (T&K) dynamics by Thorpe. The potential importance of T&K dynamics in the atmosphere, and in the oceans and other stratified and sheared fluids, is due to their accelerated turbulence transitions and elevated energy dissipation rates relative to KHI turbulence transitions occurring in their absence. Motivated by these studies, we survey recent observational evidence of multiscale Kelvin–Helmholtz instabilities throughout the atmosphere, many features of which closely resemble T&K dynamics observed in the laboratory and idealized initial modeling. These efforts will guide further modeling assessing the potential importance of these T&K dynamics in turbulence generation, energy dissipation, and mixing throughout the atmosphere and other fluids. We expect these dynamics to have implications for parameterizing mixing and transport in stratified shear flows in the atmosphere and oceans that have not been considered to date. Companion papers describe results of a multiscale gravity wave direct numerical simulation (DNS) that serendipitously exhibits a number of KHI T&K events and an idealized multiscale DNS of KHI T&K dynamics without gravity wave influences. Significance StatementKelvin–Helmholtz instabilities (KHI) occur throughout the atmosphere and induce turbulence and mixing that need to be represented in weather prediction and other models of the atmosphere and oceans. This paper documents recent atmospheric evidence for widespread, more intense, features of KHI dynamics that arise where KH billows are initially discontinuous, misaligned, or varying along their axes. These features initiate strong local vortex interactions described as “tubes” and “knots” in early laboratory experiments, suggested by, but not recognized in, earlier atmospheric and oceanic profiling, and only recently confirmed in newer, high-resolution atmospheric imaging and idealized modeling to date. 
    more » « less
  4. Abstract A companion paper by Hecht et al. (2020,https://doi.org/10.1002/2014JD021833) describes high‐resolution observations in the hydroxyl (OH) airglow layer of interactions among adjacent Kelvin‐Helmholtz instabilities (KHI). The interactions in this case were apparently induced by gravity waves propagating nearly orthogonally to the KHI orientations, became strong as Kelvin‐Helmholtz (KH) billows achieved large amplitudes, and included features named “tubes” and “knots” in early laboratory KHI studies. A numerical modeling study approximating the KHI environment and revealing the dynamics of knots and tubes is described here. These features arise where KH billows are misaligned along their axes or where two billows must merge with one. They bear a close resemblance to the observed instability dynamics and suggest that they are likely to occur wherever KHI formation is modulated by variable wind shears, stability, or larger‐scale motions. Small‐scale features typical of those in turbulence develop in association with the formation of the knots and tubes earlier and more rapidly than those accompanying individual billows, supporting an earlier conjecture that tubes and knots are commonly major sources of intense turbulent dissipation accompanying KHI events in the atmosphere. 
    more » « less