Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ability of unevolved amino acid sequences to become biological catalysts was key to the emergence of life on Earth. However, billions of years of evolution separate complex modern enzymes from their simpler early ancestors. To probe how unevolved sequences can develop new functions, we use ultrahigh-throughput droplet microfluidics to screen for phosphoesterase activity amidst a library of more than one million sequences based on a de novo designed 4-helix bundle. Characterization of hits revealed that acquisition of function involved a large jump in sequence space enriching for truncations that removed >40% of the protein chain. Biophysical characterization of a catalytically active truncated protein revealed that it dimerizes into an α-helical structure, with the gain of function accompanied by increased structural dynamics. The identified phosphodiesterase is a manganese-dependent metalloenzyme that hydrolyses a range of phosphodiesters. It is most active towards cyclic AMP, with a rate acceleration of ~109and a catalytic proficiency of >1014 M−1, comparable to larger enzymes shaped by billions of years of evolution.more » « lessFree, publicly-accessible full text available July 1, 2025
-
William DeGrado (Ed.)Producing novel enzymes that are catalytically active in vitro and biologically functional in vivo is a key goal of synthetic biology. Previously, we reported Syn-F4, the first de novo protein that meets both criteria. Syn-F4 hydrolyzed the siderophore ferric enterobactin, and expression of Syn-F4 allowed an inviable strain ofEscherichia coli(Δfes) to grow in iron-limited medium. Here, we describe the crystal structure of Syn-F4. Syn-F4 forms a dimeric 4-helix bundle. Each monomer comprises two long α-helices, and the loops of the Syn-F4 dimer are on the same end of the bundle (syntopology). Interestingly, there is a penetrated hole in the central region of the Syn-F4 structure. Extensive mutagenesis experiments in a previous study showed that five residues (Glu26, His74, Arg77, Lys78, and Arg85) were essential for enzymatic activity in vivo. All these residues are located around the hole in the central region of the Syn-F4 structure, suggesting a putative active site with a catalytic dyad (Glu26–His74). The complete inactivity of purified proteins with mutations at the five residues supports the putative active site and reaction mechanism. Molecular dynamics and docking simulations of the ferric enterobactin siderophore binding to the Syn-F4 structure demonstrate the dynamic property of the putative active site. The structure and active site of Syn-F4 are completely different from native enterobactin esterase enzymes, thereby demonstrating that proteins designed de novo can provide life-sustaining catalytic activities using structures and mechanisms dramatically different from those that arose in nature.more » « less
-
De novo proteins constructed from novel amino acid sequences are distinct from proteins that evolved in nature. Construct K (ConK) is a binary-patterned de novo designed protein that rescues Escherichia coli from otherwise toxic concentrations of copper. ConK was recently found to bind the cofactor PLP (pyridoxal phosphate, the active form of vitamin B 6 ). Here, we show that ConK catalyzes the desulfurization of cysteine to H 2 S, which can be used to synthesize CdS nanocrystals in solution. The CdS nanocrystals are approximately 3 nm, as measured by transmission electron microscope, with optical properties similar to those seen in chemically synthesized quantum dots. The CdS nanocrystals synthesized using ConK have slower growth rates and a different growth mechanism than those synthesized using natural biomineralization pathways. The slower growth rate yields CdS nanocrystals with two desirable properties not observed during biomineralization using natural proteins. First, CdS nanocrystals are predominantly of the zinc blende crystal phase; this is in stark contrast to natural biomineralization routes that produce a mixture of zinc blende and wurtzite phase CdS. Second, in contrast to the growth and eventual precipitation observed in natural biomineralization systems, the CdS nanocrystals produced by ConK stabilize at a final size. Future optimization of CdS nanocrystal growth using ConK—or other de novo proteins—may help to overcome the limits on nanocrystal quality typically observed from natural biomineralization by enabling the synthesis of more stable, high-quality quantum dots at room temperature.more » « less
-
Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)Free, publicly-accessible full text available August 23, 2025
-
null (Ed.)ABSTRACT: The dosing of peptide and protein therapeutics is complicated by rapid clearance from the blood pool and poor cellular membrane permeability. Encapsulation into nanocarriers such as liposomes or polymersomes has long been explored to overcome these limitations, but manufacturing challenges have limited clinical translation by these approaches. Recently, inverse Flash NanoPrecipitation (iFNP) has been developed to produce highly loaded polymeric nanocarriers with the peptide or protein contained within a hydrophilic core, stabilized by a hydrophobic polymer shell. Encapsulation of proteins with higher-order structure requires understanding how processing may affect their conformational state. We demonstrate a combined experimental/simulation approach to characterize protein behavior during iFNP processing steps using the Trp-cage protein TC5b as a model. Explicit-solvent fully atomistic molecular dynamics simulations with enhanced sampling techniques are coupled with two-dimensional heteronuclear multiple-quantum coherence nuclear magnetic resonance spectroscopy (2D-HMQC NMR) and circular dichroism to determine the structure of TC5b during mixed-solvent exposure encountered in iFNP processing. The simulations involve atomistic models of mixed solvents and protein to capture the complexity of the hydrogen bonding and hydrophobic interactions between water, dimethylsulfoxide (DMSO), and the protein. The combined analyses reveal structural unfolding of the protein in 11 M DMSO but confirm complete refolding after release from the polymeric nanocarrier back into an aqueous phase.more » « less
-
Context.Many active galaxies harbor powerful relativistic jets, however, the detailed mechanisms of their formation and acceleration remain poorly understood. Aims.To investigate the area of jet acceleration and collimation with the highest available angular resolution, we study the innermost region of the bipolar jet in the nearby low-ionization nuclear emission-line region (LINER) galaxy NGC 1052. Methods.We combined observations of NGC 1052 taken with VLBA, GMVA, and EHT over one week in the spring of 2017. Our study is focused on the size and continuum spectrum of the innermost region containing the central engine and the footpoints of both jets. We employed a synchrotron-self absorption model to fit the continuum radio spectrum and we combined the size measurements from close to the central engine out to ∼1 pc to study the jet collimation. Results.For the first time, NGC 1052 was detected with the EHT, providing a size of the central region in-between both jet bases of 43 μas perpendicular to the jet axes, corresponding to just around 250 RS(Schwarzschild radii). This size estimate supports previous studies of the jets expansion profile which suggest two breaks of the profile at around 3 × 103 RSand 1 × 104 RSdistances to the core. Furthermore, we estimated the magnetic field to be 1.25 Gauss at a distance of 22 μas from the central engine by fitting a synchrotron-self absorption spectrum to the innermost emission feature, which shows a spectral turn-over at ∼130 GHz. Assuming a purely poloidal magnetic field, this implies an upper limit on the magnetic field strength at the event horizon of 2.6 × 104 Gauss, which is consistent with previous measurements. Conclusions.The complex, low-brightness, double-sided jet structure in NGC 1052 makes it a challenge to detect the source at millimeter (mm) wavelengths. However, our first EHT observations have demonstrated that detection is possible up to at least 230 GHz. This study offers a glimpse through the dense surrounding torus and into the innermost central region, where the jets are formed. This has enabled us to finally resolve this region and provide improved constraints on its expansion and magnetic field strength.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract In a companion paper, we present the first spatially resolved polarized image of Sagittarius A* on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%–28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87*, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A* (equivalent to ≈46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow.more » « less
-
Abstract The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with massM≈ 4 × 106M⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication.more » « less