skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: The putative center in NGC 1052
Context.Many active galaxies harbor powerful relativistic jets, however, the detailed mechanisms of their formation and acceleration remain poorly understood. Aims.To investigate the area of jet acceleration and collimation with the highest available angular resolution, we study the innermost region of the bipolar jet in the nearby low-ionization nuclear emission-line region (LINER) galaxy NGC 1052. Methods.We combined observations of NGC 1052 taken with VLBA, GMVA, and EHT over one week in the spring of 2017. Our study is focused on the size and continuum spectrum of the innermost region containing the central engine and the footpoints of both jets. We employed a synchrotron-self absorption model to fit the continuum radio spectrum and we combined the size measurements from close to the central engine out to ∼1 pc to study the jet collimation. Results.For the first time, NGC 1052 was detected with the EHT, providing a size of the central region in-between both jet bases of 43 μas perpendicular to the jet axes, corresponding to just around 250 RS(Schwarzschild radii). This size estimate supports previous studies of the jets expansion profile which suggest two breaks of the profile at around 3 × 103 RSand 1 × 104 RSdistances to the core. Furthermore, we estimated the magnetic field to be 1.25 Gauss at a distance of 22 μas from the central engine by fitting a synchrotron-self absorption spectrum to the innermost emission feature, which shows a spectral turn-over at ∼130 GHz. Assuming a purely poloidal magnetic field, this implies an upper limit on the magnetic field strength at the event horizon of 2.6 × 104 Gauss, which is consistent with previous measurements. Conclusions.The complex, low-brightness, double-sided jet structure in NGC 1052 makes it a challenge to detect the source at millimeter (mm) wavelengths. However, our first EHT observations have demonstrated that detection is possible up to at least 230 GHz. This study offers a glimpse through the dense surrounding torus and into the innermost central region, where the jets are formed. This has enabled us to finally resolve this region and provide improved constraints on its expansion and magnetic field strength.  more » « less
Award ID(s):
2034306
PAR ID:
10563638
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Astronomy & Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
692
ISSN:
0004-6361
Page Range / eLocation ID:
A205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz. Aims.Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84. Methods.We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u, v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure. Results.We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency ofνm = (113 ± 4) GHz, a corresponding synchrotron self-absorbed magnetic field ofBSSA = (2.9 ± 1.6) G, and an equipartition magnetic field ofBeq = (5.2 ± 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (mnet = (17.0 ± 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017–2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84. Conclusions.The findings of our investigation into different flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84. 
    more » « less
  2. Abstract Accreting supermassive black holes (SMBHs) produce highly magnetized relativistic jets that tend to collimate gradually as they propagate outward. However, recent radio interferometric observations of the 3C 84 galaxy reveal a stunning, cylindrical jet already at several hundred SMBH gravitational radii,r≳ 350rg. We explore how such extreme collimation emerges via a suite of 3D general relativistic magnetohydrodynamic simulations. We consider an SMBH surrounded by a magnetized torus immersed in a constant-density ambient medium that starts at the edge of the SMBH sphere of influence, chosen to be much larger than the SMBH gravitational radius,rB= 103rg. We find that radiatively inefficient accretion flows (e.g., M87) produce winds that collimate the jets into parabolas near the black hole. After the disk winds stop collimating the jets atr≲rB, they turn conical. Once outsiderB, the jets run into the ambient medium and form backflows that collimate the jets into cylinders some distance beyondrB. Interestingly, for radiatively efficient accretion, as in 3C 84, the radiative cooling saps the energy out of the disk winds; at early times, they cannot efficiently collimate the jets, which skip the initial parabolic collimation stage, start out conical near the SMBH, and turn into cylinders already atr≃ 300rg, as observed in 3C 84. Over time, the jet power remains approximately constant, whereas the mass accretion rate increases; the winds grow in strength and start to collimate the jets, which become quasi-parabolic near the base, and the transition point to a nearly cylindrical jet profile moves outward while remaining insiderB
    more » « less
  3. Context. Because of its proximity and the large size of its black hole, M 87 is one of the best targets for studying the launching mechanism of active galactic nucleus jets. Currently, magnetic fields are considered to be an essential factor in the launching and accelerating of the jet. However, current observational estimates of the magnetic field strength of the M 87 jet are limited to the innermost part of the jet (≲100 r s ) or to HST-1 (∼10 5   r s ). No attempt has yet been made to measure the magnetic field strength in between. Aims. We aim to infer the magnetic field strength of the M 87 jet out to a distance of several thousand r s by tracking the distance-dependent changes in the synchrotron spectrum of the jet from high-resolution very long baseline interferometry observations. Methods. In order to obtain high-quality spectral index maps, quasi-simultaneous observations at 22 and 43 GHz were conducted using the KVN and VERA Array (KaVA) and the Very Long Baseline Array (VLBA). We compared the spectral index distributions obtained from the observations with a model and placed limits on the magnetic field strengths as a function of distance. Results. The overall spectral morphology is broadly consistent over the course of these observations. The observed synchrotron spectrum rapidly steepens from α 22 − 43 GHz  ∼ −0.7 at ∼2 mas to α 22 − 43 GHz  ∼ −2.5 at ∼6 mas. In the KaVA observations, the spectral index remains unchanged until ∼10 mas, but this trend is unclear in the VLBA observations. A spectral index model in which nonthermal electron injections inside the jet decrease with distance can adequately reproduce the observed trend. This suggests the magnetic field strength of the jet at a distance of 2−10 mas (∼900 r s  − ∼4500 r s in the deprojected distance) has a range of B  = (0.3−1.0 G)( z /2mas) −0.73 . Extrapolating to the Event Horizon Telescope scale yields consistent results, suggesting that the majority of the magnetic flux of the jet near the black hole is preserved out to ∼4500 r s without significant dissipation. 
    more » « less
  4. Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger tor≳ 1011cm. The disk that forms after a merger of mass ratioq= 2 ejects massive disk winds (3–5 × 10−2M). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asLj∼t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ0> 100 retain significant magnetization (σ≫ 1) atr> 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. 
    more » « less
  5. Abstract High-energy neutrinos are detected by the IceCube Observatory in the direction of NGC 1068, the archetypical type II Seyfert galaxy. The neutrino flux, surprisingly, is more than an order of magnitude higher than theγ-ray upper limits at measured TeV energy, posing tight constraints on the physical conditions of a neutrino production site. We report an analysis of the submillimeter, mid-infrared, and ultraviolet observations of the central 50 pc of NGC 1068 and suggest that the inner dusty torus and the region where the jet interacts with the surrounding interstellar medium (ISM) may be a potential neutrino production site. Based on radiation and magnetic field properties derived from observations, we calculate the electromagnetic cascade of theγ-rays accompanying the neutrinos. When injecting protons with a hard spectrum, our model may explain the observed neutrino flux above ∼10 TeV. It predicts a unique sub-TeVγ-ray component, which could be identified by a future observation. Jet–ISM interactions are commonly observed in the proximity of jets of both supermassive and stellar-mass black holes. Our results imply that such interaction regions could beγ-ray-obscured neutrino production sites, which are needed to explain the IceCube diffuse neutrino flux. 
    more » « less