Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT In our Galactic Centre, about $$10\,000$$ to $$100\,000$$ stars are estimated to have survived tidal disruption events, resulting in partially disrupted remnants. These events occur when a supermassive black hole (SMBH) tidally interacts with a star, but not enough to completely disrupt the star. We use the 1D stellar evolution code Kepler and the 3D smoothed particle hydrodynamics code Phantom to model the tidal disruption of 1, 3, and $$10\, \mathrm{M}_\odot$$ stars at zero-age main sequence (ZAMS), middle-age main sequence (MAMS), and terminal-age main sequence (TAMS). We map the disruption remnants into Kepler in order to understand their post-distribution evolution. We find distinct characteristics in the remnants, including increased radius, rapid core rotation, and differential rotation in the envelope. The remnants undergo composition mixing that affects their stellar evolution. Although the remnants formed by disruption of ZAMS models evolve similarly to unperturbed models of the same mass, for MAMS and TAMS stars, the remnants have higher luminosity and effective temperature. Potential observational signatures include peculiarities in nitrogen and carbon abundances, higher luminosity, rapid rotation, faster evolution, and unique tracks in the Hertzsprung–Russell diagram.more » « less
- 
            ABSTRACT Low-metallicity very massive stars with an initial mass of ∼140–$$260\, \mathrm{M}_\odot$$ are expected to end their lives as pair-instability supernovae (PISNe). The abundance pattern resulting from a PISN differs drastically from regular core-collapse supernova (CCSN) models and is expected to be seen in very metal-poor (VMP) stars of [Fe/H] ≲ −2. Despite the routine discovery of many VMP stars, the unique abundance pattern expected from PISNe has not been unambiguously detected. The recently discovered VMP star LAMOST J1010 + 2358, however, shows a peculiar abundance pattern that is remarkably well fit by a PISN, indicating the potential first discovery of a bonafide star born from gas polluted by a PISN. In this paper, we study the detailed nucleosynthesis in a large set of models of CCSN of Pop III and Pop II star of metallicity [Fe/H] = −3 with masses ranging from 12 to $$30\, \mathrm{M}_\odot$$. We find that the observed abundance pattern in LAMOST J1010 + 2358 can be fit at least equally well by CCSN models of ∼12–$$14\, \mathrm{M}_\odot$$ that undergo negligible fallback following the explosion. The best-fitting CCSN models provide a fit that is even marginally better than the best-fitting PISN model. We conclude the measured abundance pattern in LAMOST J1010 + 2358 could have originated from a CCSN and therefore cannot be unambiguously identified with a PISN given the set of elements measured in it to date. We identify key elements that need to be measured in future detections in stars like LAMOST J1010 + 2358 that can differentiate between CCSN and PISN origin.more » « less
- 
            Abstract Supermassive primordial stars with masses exceeding ∼105M⊙that form in atomically cooled halos are the leading candidates for the origin of high-redshift quasars atz> 6. Recent numerical simulations, however, find that multiple accretion disks can form within a halo, each of which can potentially host a supermassive star. We investigate the formation and evolution of secondary supermassive stars in atomically cooled halos, including strong variations in their accretion histories driven by gravitational interactions between their disks and those surrounding the primary supermassive stars in each halo. We find that all secondary disks produce long-lived supermassive stars under sustained rapid accretion. We also find, however, that the majority of secondary supermassive stars do undergo at least one protracted quiescent accretion phase, during which time they thermally relax and may become powerful sources of ionizing feedback. In many halos, the two satellite disks collide, suggesting that the two stars can come into close proximity. This may induce additional mass exchange between them, leading to a great diversity of possible outcomes. These range from coevolution as main-sequence stars to main sequence—black hole pairs and black hole—black hole mergers. We discuss the likely outcome for these binary interactions based on the evolutionary state of both supermassive stars at the end of our simulations, as well as prospects for their future detection by current and next-generation facilities.more » « less
- 
            ABSTRACT Spectroscopy is an important tool for providing insights into the structure of core-collapse supernova explosions. We use the Monte Carlo radiative transfer code artis to compute synthetic spectra and light curves based on a two-dimensional explosion model of an ultra-stripped supernova. These calculations are designed both to identify observable fingerprints of ultra-stripped supernovae and as a proof of principle for using synthetic spectroscopy to constrain the nature of stripped-envelope supernovae more broadly. We predict characteristic spectral and photometric features for our ultra-stripped explosion model, and find that these do not match observed ultra-stripped supernova candidates like SN 2005ek. With a peak bolometric luminosity of $$6.8\times 10^{41}\, \mathrm{erg}\, \mathrm{s}^{-1}$$, a peak magnitude of $$-15.9\, \mathrm{mag}$$ in R band, and Δm15,R = 3.50, the model is even fainter and evolves even faster than SN 2005ek as the closest possible analogue in photometric properties. The predicted spectra are extremely unusual. The most prominent features are Mg ii lines at $$2 {,}800\, {\mathring{\rm A}}$$ and $$4 {,}500\, {\mathring{\rm A}}$$ and the infrared Ca triplet at late times. The Mg lines are sensitive to the multidimensional structure of the model and are viewing-angle dependent. They disappear due to line blanketing by iron group elements in a spherically averaged model with additional microscopic mixing. In future studies, multi-D radiative transfer calculations need to be applied to a broader range of models to elucidate the nature of observed Type Ib/c supernovae.more » « less
- 
            ABSTRACT Very metal-poor stars that have [Fe/H] < −2 and that are enhanced in C relative to Fe ([C/Fe] > +0.7) but have no enhancement of heavy elements ([Ba/Fe] < 0) are known as carbon-enhanced metal-poor (CEMP-no) stars. These stars are thought to be produced from a gas that was polluted by the supernova (SN) ejecta of the very first generation (Population III) massive stars. The very high enrichment of C (A(C) ≳ 6) observed in many of the CEMP-no stars is difficult to explain by current models of SN explosions from massive Population III stars when a reasonable dilution of the SN ejecta, which is consistent with detailed simulation of metal mixing in minihaloes, is adopted. We explore rapidly rotating Population III stars that undergo efficient mixing and reach a quasi-chemically homogeneous (QCH) state. We find that QCH stars can eject large amounts of C in the wind and that the resulting dilution of the wind ejecta in the interstellar medium can lead to a C enrichment of A(C) ≲ 7.75. The core of QCH stars can produce up to an order of magnitude of more C than non-rotating progenitors of similar mass and the resulting SN can lead to a C enrichment of A(C) ≲ 7. Our rapidly rotating massive Population III stars cover almost the entire range of A(C) observed in CEMP-no stars and are a promising site for explaining the high C enhancement in the early Galaxy. Our work indicates that a substantial fraction of Population III stars were likely rapid rotators.more » « less
- 
            Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S. (Ed.)Up to now, more than 62 of the 115 X-ray sources of low-mass-X-ray binaries have been identified as photospheric radius expansion (PRE) bursters [1]. Galloway and collaborators expect more PRE bursters in their near future analysis [2]. Although more than half of the discovered X-ray sources are PRE bursters, the bursting mechanism of PRE burster is still not adequately understood. This is because of the complicated hydrodynamics and variable accretion rates. An example is the accretion-powered millisecond pulsar SAX J1808.4–3658 [3, 4] that powered up the brightest Type-I X-ray burst (XRB) recorded by NICER in recent history [5]. The first 1D multi-zone model of SAX J1808.4–3658 was recently constructed [6, 7]. The pioneering model offers a first concurrent and direct comparison with the observed light curves, fluences, and recurrence times. With the three observables, a comparison between theory and observations could be more sensitive than the previous studies of the clocked burster and post-processing models. We perform a sensitivity study on ( α ,p), ( α , γ ), (p, α ), and (p, γ ) reactions with a total up to ~1,500 reactions. Our current result indicates that the observables are more sensitive to the competition between the reactions involving alpha-capture, e.g., the 22 Mg( α , p) and 22 Mg(p, γ ) reactions competing at the 22 Mg branch point [8].more » « less
- 
            Abstract We reassess the 65 As(p, γ ) 66 Se reaction rates based on a set of proton thresholds of 66 Se, S p ( 66 Se), estimated from the experimental mirror nuclear masses, theoretical mirror displacement energies, and full p f -model space shell-model calculation. The self-consistent relativistic Hartree–Bogoliubov theory is employed to obtain the mirror displacement energies with much reduced uncertainty, and thus reducing the proton-threshold uncertainty up to 161 keV compared to the AME2020 evaluation. Using the simulation instantiated by the one-dimensional multi-zone hydrodynamic code, K epler , which closely reproduces the observed GS 1826−24 clocked bursts, the present forward and reverse 65 As(p, γ ) 66 Se reaction rates based on a selected S p ( 66 Se) = 2.469 ± 0.054 MeV, and the latest 22 Mg( α ,p) 25 Al, 56 Ni(p, γ ) 57 Cu, 57 Cu(p, γ ) 58 Zn, 55 Ni(p, γ ) 56 Cu, and 64 Ge(p, γ ) 65 As reaction rates, we find that though the GeAs cycles are weakly established in the rapid-proton capture process path, the 65 As(p, γ ) 66 Se reaction still strongly characterizes the burst tail end due to the two-proton sequential capture on 64 Ge, not found by the Cyburt et al. sensitivity study. The 65 As(p, γ ) 66 Se reaction influences the abundances of nuclei A = 64, 68, 72, 76, and 80 up to a factor of 1.4. The new S p ( 66 Se) and the inclusion of the updated 22 Mg( α ,p) 25 Al reaction rate increases the production of 12 C up to a factor of 4.5, which is not observable and could be the main fuel for a superburst. The enhancement of the 12 C mass fraction alleviates the discrepancy in explaining the origin of the superburst. The waiting point status of and two-proton sequential capture on 64 Ge, the weak-cycle feature of GeAs at a region heavier than 64 Ge, and the impact of other possible S p ( 66 Se) are also discussed.more » « less
- 
            Abstract During the X-ray bursts of GS 1826−24, a “clocked burster”, the nuclear reaction flow that surges through the rapid-proton capture process path has to pass through the NiCu cycles before reaching the ZnGa cycles that moderate further hydrogen burning in the region above the germanium and selenium isotopes. The 57 Cu(p, γ ) 58 Zn reaction that occurs in the NiCu cycles plays an important role in influencing the burst light curves found by Cyburt et al. We deduce the 57 Cu(p, γ ) 58 Zn reaction rate based on the experimentally determined important nuclear structure information, isobaric-multiplet-mass equation, and large-scale shell-model calculations. Based on the isobaric-multiplet-mass equation, we propose a possible order of 1 1 + - and 2 3 + -dominant resonance states and constrain the resonance energy of the 1 2 + state. The latter reduces the contribution of the 1 2 + -dominant resonance state. The new reaction rate is up to a factor of 4 lower than the Forstner et al. rate recommended by JINA REACLIB v2.2 at the temperature regime sensitive to clocked bursts of GS 1826−24. Using the simulation from the one-dimensional implicit hydrodynamic code K epler to model the thermonuclear X-ray bursts of the GS 1826−24 clocked burster, we find that the new 57 Cu(p, γ ) 58 Zn reaction rate, coupled with the latest 56 Ni(p, γ ) 57 Cu and 55 Ni(p, γ ) 56 Cu reaction rates, redistributes the reaction flow in the NiCu cycles and strongly influences the burst ash composition, whereas the 59 Cu(p, α ) 56 Ni and 59 Cu(p, γ ) 60 Zn reactions suppress the influence of the 57 Cu(p, γ ) 58 Zn reaction and diminish the impact of nuclear reaction flow that bypasses the important 56 Ni waiting point induced by the 55 Ni(p, γ ) 56 Cu reaction on the burst light curve.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
