Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

A bstract We study operators with large charge j in the d dimensional O ( N ) model with long range interactions that decrease with the distance as 1/ r d + s , where s is a continuous parameter. We consider the double scaling limit of large N , large j with $$ j/N=\hat{j} $$ j / N = j ̂ fixed, and identify the semiclassical saddle point that captures the twopoint function of the large charge operators in this limit. The solution is given in terms of certain ladder conformal integrals that have recently appeared in the literature on fishnet models. We find that the scaling dimensions for general s interpolate between $$ {\Delta }_j\sim \frac{\left(ds\right)}{2}j $$ ∆ j ∼ d − s 2 j at small $$ \hat{j} $$ j ̂ and $$ {\Delta }_j\sim \frac{\left(d+s\right)}{2}j $$ ∆ j ∼ d + s 2 j at large $$ \hat{j} $$ j ̂ , which is a qualitatively different behavior from the one found in the short range version of the O ( N ) model. We also derive results for the structure constants and 4point functions with two large charge and one or two finite charge operators. Using a description of the long range models as defects in a higher dimensional local free field theory, we also obtain the scaling dimensions in a complementary way, by mapping the problem to a cylinder in the presence of a chemical potential for the conserved charge.more » « less

A bstract We study the boundary critical behavior of conformal field theories of interacting fermions in the GrossNeveu universality class. By a Weyl transformation, the problem can be studied by placing the CFT in an anti de Sitter space background. After reviewing some aspects of free fermion theories in AdS, we use both large N methods and the epsilon expansion near 2 and 4 dimensions to study the conformal boundary conditions in the GrossNeveu CFT. At large N and general dimension d , we find three distinct boundary conformal phases. Near four dimensions, where the CFT is described by the WilsonFisher fixed point of the GrossNeveuYukawa model, two of these phases correspond respectively to the choice of Neumann or Dirichlet boundary condition on the scalar field, while the third one corresponds to the case where the bulk scalar field acquires a classical expectation value. One may flow between these boundary critical points by suitable relevant boundary deformations. We compute the AdS free energy on each of them, and verify that its value is consistent with the boundary version of the Ftheorem. We also compute some of the BCFT observables in these theories, including bulk twopoint functions of scalar and fermions, and fourpoint functions of boundary fermions.more » « less

A bstract We study monodromy defects in O ( N ) symmetric scalar field theories in d dimensions. After a Weyl transformation, a monodromy defect may be described by placing the theory on S 1 × H d− 1 , where H d− 1 is the hyperbolic space, and imposing on the fundamental fields a twisted periodicity condition along S 1 . In this description, the codimension two defect lies at the boundary of H d− 1 . We first study the general monodromy defect in the free field theory, and then develop the large N expansion of the defect in the interacting theory, focusing for simplicity on the case of N complex fields with a oneparameter monodromy condition. We also use the ϵ expansion in d = 4 − ϵ , providing a check on the large N approach. When the defect has spherical geometry, its expectation value is a meaningful quantity, and it may be obtained by computing the free energy of the twisted theory on S 1 × H d− 1 . It was conjectured that the logarithm of the defect expectation value, suitably multiplied by a dimension dependent sine factor, should decrease under a defect RG flow. We check this conjecture in our examples, both in the free and interacting case, by considering a defect RG flow that corresponds to imposing alternate boundary conditions on one of the lowlying KaluzaKlein modes on H d− 1 . We also show that, adapting standard techniques from the AdS/CFT literature, the S 1 × H d− 1 setup is well suited to the calculation of the defect CFT data, and we discuss various examples, including onepoint functions of bulk operators, scaling dimensions of defect operators, and fourpoint functions of operator insertions on the defect.more » « less