skip to main content

Title: Long range, large charge, large N
A bstract We study operators with large charge j in the d -dimensional O ( N ) model with long range interactions that decrease with the distance as 1/ r d + s , where s is a continuous parameter. We consider the double scaling limit of large N , large j with $$ j/N=\hat{j} $$ j / N = j ̂ fixed, and identify the semiclassical saddle point that captures the two-point function of the large charge operators in this limit. The solution is given in terms of certain ladder conformal integrals that have recently appeared in the literature on fishnet models. We find that the scaling dimensions for general s interpolate between $$ {\Delta }_j\sim \frac{\left(d-s\right)}{2}j $$ ∆ j ∼ d − s 2 j at small $$ \hat{j} $$ j ̂ and $$ {\Delta }_j\sim \frac{\left(d+s\right)}{2}j $$ ∆ j ∼ d + s 2 j at large $$ \hat{j} $$ j ̂ , which is a qualitatively different behavior from the one found in the short range version of the O ( N ) model. We also derive results for the structure constants and 4-point functions with two large charge and one or two finite charge operators. Using a description of the long range models as defects in a higher dimensional local free field theory, we also obtain the scaling dimensions in a complementary way, by mapping the problem to a cylinder in the presence of a chemical potential for the conserved charge.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study operators in the rank- j totally symmetric representation of O ( N ) in the critical O ( N ) model in arbitrary dimension d , in the limit of large N and large charge j with j/N ≡ $$ \hat{j} $$ j ̂ fixed. The scaling dimensions of the operators in this limit may be obtained by a semiclassical saddle point calculation. Using the standard Hubbard-Stratonovich description of the critical O ( N ) model at large N , we solve the relevant saddle point equation and determine the scaling dimensions as a function of d and $$ \hat{j} $$ j ̂ , finding agreement with all existing results in various limits. In 4 < d < 6, we observe that the scaling dimension of the large charge operators becomes complex above a critical value of the ratio j/N , signaling an instability of the theory in that range of d . Finally, we also derive results for the correlation functions involving two “heavy” and one or two “light” operators. In particular, we determine the form of the “heavy-heavy-light” OPE coefficients as a function of the charges and d . 
    more » « less
  2. A bstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large- N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R 4 and D 4 R 4 contact inter-actions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2 , ℤ) invariant. 
    more » « less
  3. Let { s j } j = 1 n \left \{ s_{j}\right \} _{j=1}^{n} be positive integers. We show that for any 1 ≤ L ≤ n , 1\leq L\leq n, ‖ ∏ j = 1 n ( 1 − z s j ) ‖ L ∞ ( | z | = 1 ) ≥ exp ⁡ ( 1 2 e L ( s 1 s 2 … s L ) 1 / L ) . \begin{equation*} \left \Vert \prod _{j=1}^{n}\left ( 1-z^{s_{j}}\right ) \right \Vert _{L_{\infty }\left ( \left \vert z\right \vert =1\right ) }\geq \exp \left ( \frac {1}{2e}\frac {L}{\left ( s_{1}s_{2}\ldots s_{L}\right ) ^{1/L}}\right ) . \end{equation*} In particular, this gives geometric growth if a positive proportion of the { s j } \left \{ s_{j}\right \} are bounded. We also show that when the { s j } \left \{ s_{j}\right \} grow regularly and faster than j ( log ⁡ j ) 2 + ε j\left ( \log j\right ) ^{2+\varepsilon } , some ε > 0 \varepsilon >0 , then the norms grow faster than exp ⁡ ( ( log ⁡ n ) 1 + δ ) \exp \left ( \left ( \log n\right ) ^{1+\delta }\right ) for some δ > 0 \delta >0 . 
    more » « less
  4. A bstract We study the large charge sector of the defect CFT defined by the half-BPS Wilson loop in planar N = 4 supersymmetric Yang-Mills theory. Specifically, we consider correlation functions of two large charge insertions and several light insertions in the double-scaling limit where the ’t Hooft coupling λ and the large charge J are sent to infinity, with the ratio J/ $$ \sqrt{\lambda } $$ λ held fixed. They are holographically dual to the expectation values of light vertex operators on a classical string solution with large angular momentum, which we evaluate in the leading large J limit. We also compute the two-point function of large charge insertions by evaluating the on-shell string action, supplemented by the boundary terms that generalize the one introduced by Drukker, Gross and Ooguri for the Wilson loop without insertions. For a special class of correlation functions, we reproduce the string results from field theory by using supersymmetric localization. The results are given by correlation functions in an “emergent” matrix model whose matrix size is proportional to J and whose spectral curve coincides with that of the classical string. Similar matrix models appeared in the study of extremal correlators in rank-1 $$ \mathcal{N} $$ N = 2 superconformal field theories, but our results hold also for non-extremal cases. 
    more » « less
  5. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less