skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hepler, Staci A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a novel data set for drought in the continental US (CONUS) built to enable computationally efficient spatio-temporal statistical and probabilistic models of drought. We converted drought data obtained from the widely-used US Drought Monitor (USDM) from its native geo-referenced polygon format to a 0.5 degree regular grid. We merged known environmental drivers of drought, including those obtained from the North American Land Data Assimilation System (NLDAS-2), US Geological Survey (USGS) streamflow data, and National Oceanic and Atmospheric Administration (NOAA) teleconnections data. The resulting data set permits statistical and probabilistic modeling of drought with explicit spatial and/or temporal dependence. Such models could be used to forecast drought at short-range, seasonal to sub-seasonal, and inter-annual timescales with uncertainty, extending the reach and value of the current US Drought Outlook from the National Weather Service Climate Prediction Center. This novel data product provides the first common gridded dataset that includes critical variables used to inform hydrological and meteorological drought. 
    more » « less
  2. Competition, facilitation, and predation offer alternative explanations for successional patterns of migratory herbivores. However, these interactions are difficult to measure, leaving uncertainty about the mechanisms underlying body-size-dependent grazing—and even whether succession occurs at all. We used data from an 8-year camera-trap survey, GPS-collared herbivores, and fecal DNA metabarcoding to analyze the timing, arrival order, and interactions among migratory grazers in Serengeti National Park. Temporal grazing succession is characterized by a “push-pull” dynamic: Competitive grazing nudges zebra ahead of co-migrating wildebeest, whereas grass consumption by these large-bodied migrants attracts trailing, small-bodied gazelle that benefit from facilitation. “Natural experiments” involving intense wildfires and rainfall respectively disrupted and strengthened these effects. Our results highlight a balance between facilitative and competitive forces in co-regulating large-scale ungulate migrations. 
    more » « less