Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As climate change continues to increase air temperature in high‐altitude ecosystems, it has become critical to understand the controls and scales of aquatic habitat vulnerability to warming. Here, we used a nested array of high‐frequency sensors, and advances in time‐series models, to examine spatiotemporal variation in thermal vulnerability in a model Sierra Nevada watershed. Stream thermal sensitivity to atmospheric warming fluctuated strongly over the year and peaked in spring and summer—when hot days threaten invertebrate communities most. The reach scale (~ 50 m) best captured variation in summer thermal regimes. Elevation, discharge, and conductivity were important correlates of summer water temperature across reaches, but upstream water temperature was the paramount driver—supporting that cascading warming occurs downstream in the network. Finally, we used our estimated summer thermal sensitivity and downscaled projections of summer air temperature to forecast end‐of‐the‐century stream warming, when extreme drought years like 2020–2021 become the norm. We found that 25.5% of cold‐water habitat may be lost under high‐emissions scenario representative concentration pathway (RCP) 8.5 (or 7.9% under mitigated RCP 4.5). This estimated reduction suggests that 27.2% of stream macroinvertebrate biodiversity (11.9% under the mitigated scenario) will be stressed or threatened in what was previously cold‐water habitat. Our quantitative approach is transferrable to other watersheds with spatially replicated time series and illustrates the importance of considering variation in the vulnerability of mountain streams to warming over both space and time. This approach may inform watershed conservation efforts by helping identify, and potentially mitigate, sites and time windows of peak vulnerability.more » « less
-
Abstract A major goal of community ecology is understanding the processes responsible for generating biodiversity patterns along spatial and environmental gradients. In stream ecosystems, system‐specific conceptual frameworks have dominated research describing biodiversity change along longitudinal gradients of river networks. However, support for these conceptual frameworks has been mixed, mainly applicable to specific stream ecosystems and biomes, and these frameworks have placed less emphasis on general mechanisms driving biodiversity patterns. Rethinking biodiversity patterns and processes in stream ecosystems with a focus on the overarching mechanisms common across ecosystems will provide a more holistic understanding of why biodiversity patterns vary along river networks. In this study, we apply the theory of ecological communities (TEC) conceptual framework to stream ecosystems to focus explicitly on the core ecological processes structuring communities: dispersal, speciation, niche selection, and ecological drift. Using a unique case study from high‐elevation networks of connected lakes and streams, we sampled stream invertebrate communities in the Sierra Nevada, California, USA to test established stream ecology frameworks and compared them with the TEC framework. Local diversity increased and β‐diversity decreased moving downstream from the headwaters, consistent with the river continuum concept and the small but mighty framework of mountain stream biodiversity. Local diversity was also structured by distance below upstream lakes, where diversity increased with distance below upstream lakes, in support of the serial discontinuity concept. Despite some support for the biodiversity patterns predicted from the stream ecology frameworks, no single framework was fully supported, suggesting “context dependence.” By framing our results under the TEC, we found that species diversity was structured by niche selection, where local diversity was highest in environmentally favorable sites. Local diversity was also highest in sites with small community sizes, countering the predicted effects of ecological drift. Moreover, higher β‐diversity in the headwaters was influenced by dispersal and niche selection, where environmentally harsh and spatially isolated sites exhibit higher community variation. Taken together our results suggest that combining system‐specific ecological frameworks with the TEC provides a powerful approach for inferring the mechanisms driving biodiversity patterns and provides a path toward generalization of biodiversity research across ecosystems.more » « less
-
Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversityAbstract Mountains are global biodiversity hotspots where cold environments and their associated ecological communities are threatened by climate warming. Considerable research attention has been devoted to understanding the ecological effects of alpine glacier and snowfield recession. However, much less attention has been given to identifying climate refugia in mountain ecosystems where present‐day environmental conditions will be maintained, at least in the near‐term, as other habitats change. Around the world, montane communities of microbes, animals, and plants live on, adjacent to, and downstream of rock glaciers and related cold rocky landforms (CRL). These geomorphological features have been overlooked in the ecological literature despite being extremely common in mountain ranges worldwide with a propensity to support cold and stable habitats for aquatic and terrestrial biodiversity. CRLs are less responsive to atmospheric warming than alpine glaciers and snowfields due to the insulating nature and thermal inertia of their debris cover paired with their internal ventilation patterns. Thus, CRLs are likely to remain on the landscape after adjacent glaciers and snowfields have melted, thereby providing longer‐term cold habitat for biodiversity living on and downstream of them. Here, we show that CRLs will likely act as key climate refugia for terrestrial and aquatic biodiversity in mountain ecosystems, offer guidelines for incorporating CRLs into conservation practices, and identify areas for future research.more » « less