Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Specifically selected to leverage the unique ultraviolet capabilities of the Hubble Space Telescope, the Hubble Ultraviolet Legacy Library of Young Stars as Essential Standards (ULLYSES) is a Director’s Discretionary program of approximately 1000 orbits—the largest ever executed—that produced a UV spectroscopic library of O and B stars in nearby low-metallicity galaxies and accreting low-mass stars in the Milky Way. Observations from ULLYSES combined with archival spectra uniformly sample the fundamental astrophysical parameter space for each mass regime, including spectral type, luminosity class, and metallicity for massive stars, and the mass, age, and disk accretion rate for low-mass stars. The ULLYSES spectral library of massive stars will be critical to characterize how massive stars evolve at different metallicities; to advance our understanding of the production of ionizing photons, and thus of galaxy evolution and the re-ionization of the Universe; and to provide the templates necessary for the synthesis of integrated stellar populations. The massive-star spectra are also transforming our understanding of the interstellar and circumgalactic media of low-metallicity galaxies. On the low-mass end, UV spectra of T Tauri stars contain a plethora of diagnostics of accretion, winds, and the warm disk surface. These diagnostics are crucial for evaluating disk evolution and provide important input to assess atmospheric escape of planets and to interpret powerful probes of disk chemistry, as observed with the Atacama Large Millimeter Array and the James Webb Space Telescope. In this paper, we motivate the design of the program, describe the observing strategy and target selection, and present initial results.more » « lessFree, publicly-accessible full text available May 16, 2026
-
Abstract Observed changes in protostellar brightness can be complicated to interpret. In our James Clerk Maxwell Telescope (JCMT) Transient Monitoring Survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest 30% brightness increase at 850 μ m, caused by a factor of 1.8–3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then a shallower decay. A second rise occurred soon after the decay, and the source is still bright one year later. The mid-IR emission, the small-scale CO outflow mapped with ALMA, and the location of variable maser emission indicate that the variability is associated with the SW component. The near-IR and NEOWISE W1 and W2 emission is located along the blueshifted CO outflow, spatially offset by ∼3 to 4″ from the SW component. The K -band emission imaged by UKIRT shows a compact H 2 emission source at the edge of the outflow, with a tail tracing the outflow back to the source. The W1 emission, likely dominated by scattered light, brightens by 0.7 mag, consistent with expectations based on the submillimeter light curve. The signal of continuum variability in K band and W2 is masked by stable H 2 emission, as seen in our Gemini/GNIRS spectrum, and perhaps by CO emission. These differences in emission sources complicate IR searches for variability of the youngest protostars.more » « less
An official website of the United States government
