skip to main content


Title: Dissecting the Different Components of the Modest Accretion Bursts of the Very Young Protostar HOPS 373
Abstract Observed changes in protostellar brightness can be complicated to interpret. In our James Clerk Maxwell Telescope (JCMT) Transient Monitoring Survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest 30% brightness increase at 850 μ m, caused by a factor of 1.8–3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then a shallower decay. A second rise occurred soon after the decay, and the source is still bright one year later. The mid-IR emission, the small-scale CO outflow mapped with ALMA, and the location of variable maser emission indicate that the variability is associated with the SW component. The near-IR and NEOWISE W1 and W2 emission is located along the blueshifted CO outflow, spatially offset by ∼3 to 4″ from the SW component. The K -band emission imaged by UKIRT shows a compact H 2 emission source at the edge of the outflow, with a tail tracing the outflow back to the source. The W1 emission, likely dominated by scattered light, brightens by 0.7 mag, consistent with expectations based on the submillimeter light curve. The signal of continuum variability in K band and W2 is masked by stable H 2 emission, as seen in our Gemini/GNIRS spectrum, and perhaps by CO emission. These differences in emission sources complicate IR searches for variability of the youngest protostars.  more » « less
Award ID(s):
1814762
NSF-PAR ID:
10343161
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
929
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
60
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Gaia Alert System issued an alert on 2020 August 28, on Gaia 20eae when its light curve showed a ∼4.25 magnitude outburst. We present multiwavelength photometric and spectroscopic follow-up observations of this source since 2020 August and identify it as the newest member of the FUor/EXor family of sources. We find that the present brightening of Gaia 20eae is not due to the dust-clearing event but due to an intrinsic change in the spectral energy distribution. The light curve of Gaia 20eae shows a transition stage during which most of its brightness (∼3.4 mag) has occurred on a short timescale of 34 days with a rise rate of 3 mag/month. Gaia 20eae has now started to decay at a rate of 0.3 mag/month. We have detected a strong P Cygni profile in H α , which indicates the presence of winds originating from regions close to the accretion. We find signatures of very strong and turbulent outflow and accretion in Gaia 20eae during this outburst phase. We have also detected a redshifted absorption component in all of the Ca ii IR triplet lines consistent with a signature of hot infalling gas in the magnetospheric accretion funnel. This enables us to constrain the viewing angle with respect to the accretion funnel. Our investigation of Gaia 20eae points toward magnetospheric accretion being the phenomenon for the current outburst. 
    more » « less
  2. We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 10 40  erg s −1 and their total radiated energies are on the order of (0.3–3) × 10 47 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56 Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56 Ni masses on the order of 10 −4 to 10 −3   M ⊙ . The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s −1 , along with Ca II features. In particular, the [Ca  II ] λ 7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events. 
    more » « less
  3. null (Ed.)
    ABSTRACT At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass ≈106 M⊙, disrupting a star of ≈1 M⊙. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L ∝ t2, consistent with a photosphere expanding at constant velocity (≳2000 km s−1), and a line-forming region producing initially blueshifted H and He ii profiles with v = 3000–10 000 km s−1. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission – the first time this connection has been observed in a TDE. The light-curve rise begins 29 ± 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N iii) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at ≈1041 erg s−1. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models. 
    more » « less
  4. ABSTRACT

    We compile optical and mid-infrared light curves from the time-domain surveys (i.e. CRTS, PTF, ZTF, and ASAS-SN) and Wide-field Infrared Survey Explorer (WISE) archive for a selected sample of active galactic nuclei (AGNs) with Hβ reverberation mapping (RM) measurements. We measure the time lags (and thus torus sizes) of W1 (∼3.4 $\mu$ m) and W2 (∼4.6 $\mu$ m) band light curves relative to the optical one using the MICA method. Through Hβ RM, the sample has well-measured AGN properties, therefore allowing us to reliably constrain the relations between torus sizes and AGN properties. We perform linear regressions for the relations between torus sizes and 5100 Å luminosities ($R\propto L_{5100}^{\beta }$ ) in two cases: β = 0.5 and β set free. The latter case yields β ≈ 0.37 ± 0.028 for both W1 and W2 bands, shallower than the expected value of 0.5, possibly due to the dependence of torus size on accretion rate. For β = 0.5, by combining with the previous K band RM measurements, we obtain the characteristic broad-line region (BLR) and tours sizes following RBLR:RK :RW1:RW2 = 1.0:6.2:9.2:11.2. We investigate the deviations of the W1 and W2 band observed torus sizes from the corresponding best-fitting relations (with β = 0.5) and find that they both are correlated with accretion rate. As the accretion rate increases, the torus sizes tend to be shortened compared to the anticipated sizes from the best-fitting relations, similar to the behaviour found in BLRs. Such behaviours can be explained by the self-shadowing effect of slim discs. This is further supported by ratios of the W1 and W2 band torus sizes to BLR sizes, which do not show significant correlations with AGN properties.

     
    more » « less
  5. ABSTRACT

    We present second epoch optical spectra for 30 changing-look (CL) candidates found by searching for Type-1 optical variability in a sample of active galactic nuclei (AGNs) spectroscopically classified as Type 2. We use a random-forest-based light-curve classifier and spectroscopic follow-up, confirming 50 per cent of candidates as turning-on CLs. In order to improve this selection method and to better understand the nature of the not-confirmed CL candidates, we perform a multiwavelength variability analysis including optical, mid-infrared (MIR), and X-ray data, and compare the results from the confirmed and not-confirmed CLs identified in this work. We find that most of the not-confirmed CLs are consistent with weak Type 1s dominated by host-galaxy contributions, showing weaker optical and MIR variability. On the contrary, the confirmed CLs present stronger optical fluctuations and experience a long (from five to ten years) increase in their MIR fluxes and the colour W1–W2 over time. In the 0.2–2.3 keV band, at least four out of 11 CLs with available SRG/eROSITA detections have increased their flux in comparison with archival upper limits. These common features allow us to select the most promising CLs from our list of candidates, leading to nine sources with similar multiwavelength photometric properties to our CL sample. The use of machine learning algorithms with optical and MIR light curves will be very useful to identify CLs in future large-scale surveys.

     
    more » « less