skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Higgins, John A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The history of atmospheric oxygen ( P O 2 ) and the processes that act to regulate it remain enigmatic because of difficulties in quantitative reconstructions using indirect proxies. Here, we extend the ice-core record of P O 2 using 1.5-million-year-old (Ma) discontinuous ice samples drilled from Allan Hills Blue Ice Area, East Antarctica. No statistically significant difference exists in P O 2 between samples at 1.5 Ma and 810 thousand years (ka), suggesting that the Late-Pleistocene imbalance in O 2 sources and sinks began around the time of the transition from 40- to 100-ka glacial cycles in the Mid-Pleistocene between ~1.2 Ma and 700 ka. The absence of a coeval secular increase in atmospheric CO 2 over the past ~1 Ma requires negative feedback mechanisms such as P co 2 -dependent silicate weathering. Fast processes must also act to suppress the immediate P co 2 increase because of the imbalance in O 2 sinks over sources beginning in the Mid-Pleistocene. 
    more » « less
  2. Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. Here, we present stable isotope and trace-element data from carbonate constituents in the Bahamas, including ooids, corals, foraminifera, and algae. We use geochemical fingerprinting to demonstrate that carbonate mud cannot be sourced from the abrasion and mixture of any combination of these macroscopic grains. Instead, an inverse Bayesian mixing model requires the presence of an additional aragonite source. We posit that this source represents a direct seawater precipitate. We use geological and geochemical data to show that “whitings” are unlikely to be the dominant source of this precipitate and, instead, present a model for mud precipitation on the bank margins that can explain the geographical distribution, clumped-isotope thermometry, and stable isotope signature of carbonate mud. Next, we address the enigma of why mud and ooids are so abundant in the Bahamas, yet so rare in the rest of the world: Mediterranean outflow feeds the Bahamas with the most alkaline waters in the modern ocean (>99.7th-percentile). Such high alkalinity appears to be a prerequisite for the nonskeletal carbonate factory because, when Mediterranean outflow was reduced in the Miocene, Bahamian carbonate export ceased for 3-million-years. Finally, we show how shutting off and turning on the shallow carbonate factory can send ripples through the global climate system. 
    more » « less
  3. Abstract. The S27 ice core, drilled in the Allan Hills Blue IceArea of East Antarctica, is located in southern Victoria Land, ∼80 km away from the present-day northern edge of the RossIce Shelf. Here, we utilize the reconstructed accumulation rate of S27covering the Last Interglacial (LIG) period between 129 ka and 116 ka (where ka indicates thousands of years before present) to infer moisture transport into the region. Theaccumulation rate is based on the ice-age–gas-age differences calculatedfrom the ice chronology, which is constrained by the stable water isotopesof the ice, and an improved gas chronology based on measurements of oxygenisotopes of O2 in the trapped gases. The peak accumulation rate in S27occurred at 128.2 ka, near the peak LIG warming in Antarctica. Even the mostconservative estimate yields an order-of-magnitude increase in theaccumulation rate during the LIG maximum, whereas other Antarctic ice coresare typically characterized by a glacial–interglacial difference of a factorof 2 to 3. While part of the increase in S27 accumulation rates mustoriginate from changes in the large-scale atmospheric circulation,additional mechanisms are needed to explain the large changes. Wehypothesize that the exceptionally high snow accumulation recorded in S27reflects open-ocean conditions in the Ross Sea, created by reduced sea iceextent and increased polynya size and perhaps by a southward retreat of theRoss Ice Shelf relative to its present-day position near the onset of the LIG.The proposed ice shelf retreat would also be compatible with a sea-levelhigh stand around 129 ka significantly sourced from West Antarctica. Thepeak in S27 accumulation rates is transient, suggesting that if the Ross IceShelf had indeed retreated during the early LIG, it would have re-advancedby 125 ka. 
    more » « less