Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups. The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown and has gathered the attention of the scientific community. For the range of particles and fundamental interactions involved, particle colliders provide a novel environment where quantum information theory can be probed, with energies exceeding by about 12 orders of magnitude those employed in dedicated laboratory setups. Furthermore, collider detectors have inherent advantages in performing certain quantum information measurements and allow for the reconstruction of the state of the system under consideration via quantum state tomography. Here, we elaborate on the potential, challenges, and goals of this innovative and rapidly evolving line of research and discuss its expected impact on both quantum information theory and high-energy physics.more » « lessFree, publicly-accessible full text available September 1, 2026
-
We review progress in the global QCD analysis by the CTEQ-TEA group since the publication of CT18 parton distribution functions (PDFs) in the proton. Specifically, we discuss comparisons of CT18 NNLO predictions with the LHC 13 TeV measurements as well as with the FNAL SeaQuest and BNL STAR data on lepton pair production. The specialized CT18X PDFs approximating saturation effects are compared with the CT18sx PDFs obtained using NLL/NLO small-$$x$$ resummation. Short summaries are presented for the special CT18 parton distributions with fitted charm and with lattice QCD inputs. A recent comparative analysis of the impact of deuteron nuclear effects on the parton distributions by the CTEQ-JLab and CTEQ-TEA groups is summarized.more » « less
-
We present the new CTEQ-TEA global analysis of quantum chromodynamics (QCD). In this analysis, parton distribution functions (PDFs) of the nucleon are determined within the Hessian method at the next-to-next-to leading order (NNLO) in perturbative QCD, based on the most recent measurements from the Large Hadron Collider (LHC) and a variety of world collider data. Because of difficulties in fitting both the ATLAS 7 and 8 TeV W and Z vector boson production cross section data, we present two families of PDFs, named CT18 and CT18Z PDFs, respectively, without and with the ATLAS 7 TeV W and Z measurements. We study the impact of the CT18 family of PDFs on the theoretical predictions of standard candle cross sections at the LHC.more » « less
-
We discuss implementation of the LHC experimental data sets in the new CT18 global analysis of quantum chromodynamics (QCD) at the next-to-next-leading order of the QCD coupling strength. New methodological developments in the fitting methodology are discussed. Behavior of the CT18 NNLO PDFs for the conventional and "saturation-inspired" factorization scales in deep-inelastic scattering is reviewed. Four new families of (N)NLO CTEQ-TEA PDFs are presented: CT18, A, X, and Z.more » « less
-
Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential.more » « less
An official website of the United States government
