- PAR ID:
- 10419511
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Journal of Physics G: Nuclear and Particle Physics
- Volume:
- 50
- Issue:
- 3
- ISSN:
- 0954-3899
- Page Range / eLocation ID:
- 030501
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 $$\hbox {ab}^{-1}$$ ab - 1 of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential.more » « less
-
null (Ed.)Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.more » « less
-
Abstract The Cosmic Gravitational Wave Background (CGWB) is an irreducible background of gravitational waves generated by particle exchange in the early Universe plasma. Standard Model particles contribute to such a stochastic background with a peak at
f ∼80 GHz. Any physics beyond the Standard Model (BSM) may modify the CGWB spectrum, making it a potential testing ground for BSM physics.We consider the impact of general BSM scenarios on the CGWB, including an arbitrary number of hidden sectors.We find that the largest amplitude of the CGWB comes from the sector that dominates the energy density after reheating and confirm the dominance of the SM for standard cosmological histories.For non-standard cosmological histories, such as those with a stiff equation of stateω > 1/3, like in kination, BSM physics may dominate and modify the spectrum substantially.We conclude that, if the CGWB is detected at lower frequencies and amplitudes compared to that of the SM, it will hint at extra massive degrees of freedom or hidden sectors.If it is instead measured at higher values, it will imply a period withω > 1/3.We argue that for scenarios with periods of kination in the early Universe, a significant fraction of the parameter space can be ruled out from dark radiation bounds at BBN. -
The LHC Run III will be a crucial run for the two LHC forward experiments: LHCf and FASER. In particular, Run III will be the last run where the LHCf detector can operate, and the first run of the new FASER project. The LHCf experiment is dedicated to precise measurements of forward production, necessary to tune hadronic interaction models employed in cosmic-ray physics. In Run III, the experiment will accomplish two fundamental goals: operating in p-p collisions at s√= s = 14 TeV, it will acquire a statistics that is ten times larger respect to Run II, in order to have precise measurements of π0 π 0 production; operating in high energy p-O and O-O collisions, it will measure forward production in a configuration that is very similar to the first interaction of an Ultra High Energy Cosmic Ray with an atmospheric nucleus. The FASER experiment is dedicated to the search of new weakly-interacting light particles thanks to a forward detector with proper shielding from Standard Model background. In Run III, it will be able to search for new particles with a good sensitivity, which can be strongly improved after an upgrade before Run IV. In addition, thanks to the dedicated FASERν detector, it will measure neutrino production at a collider for the first time. In this contribution, we discuss the main results expected from the LHCf and FASER experiments in Run III, highlighting their fundamental contribution in research fields that are not accessible to the four large LHC experiments.more » « less
-
In the past decade, the Large Hadron Collider (LHC) has probed a higher energy scale than ever before. Most models of physics beyond the standard model (BSM) predict the production of new heavy particles; the LHC results have excluded lower masses of such particles. This makes the high-mass regions especially interesting for current and future searches. In most BSM scenarios of interest, the new heavy resonances decay to standard model particles. In a subset of these models, the new particles have large couplings to the top quark, the W and Z bosons, or the Higgs boson. The top quark and W, Z, and Higgs bosons often decay to quarks, giving rise to jets of particles with substructure; event selection based on substructure is used to suppress standard model backgrounds. This review covers the key concepts in experimental searches based on the jet substructure and discusses recent results from the ATLAS and CMS experiments.more » « less