skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hochachka, Wesley M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Every night during spring and autumn, the mass movement of migratory birds redistributes bird abundances found on the ground during the day. However, the connection between the magnitude of nocturnal migration and the resulting change in diurnal abundance remains poorly quantified. If departures and landings at the same location are balanced throughout the night, we expect high bird turnover but little change in diurnal abundance (stream‐like migration). Alternatively, migrants may move simultaneously in spatial pulses, with well‐separated areas of departure and landing that cause significant changes in the abundance of birds on the ground during the day (wave‐like migration). Here, we apply a flow model to data from weather surveillance radars (WSR) to quantify the daily fluxes of nocturnally migrating birds landing and departing from the ground, characterizing the movement and stopover of birds in a comprehensive synoptic scale framework. We corroborate our results with independent observations of the diurnal abundances of birds on the ground from eBird. Furthermore, we estimate the abundance turnover, defined as the proportion of birds replaced overnight. We find that seasonal bird migration chiefly resembles a stream where bird populations on the ground are continuously replaced by new individuals. Large areas show similar magnitudes of take‐off and landing, coupled with relatively small distances flown by birds each night, resulting in little change in bird densities on the ground. We further show that WSR‐inferred landing and take‐off fluxes predict changes in eBird‐derived abundance turnover rate and turnover in species composition. We find that the daily turnover rate of birds is 13% on average but can reach up to 50% on peak migration nights. Our results highlight that WSR networks can provide real‐time information on rapidly changing bird distributions on the ground. The flow model applied to WSR data can be a valuable tool for real‐time conservation and public engagement focused on migratory birds' daytime stopovers. 
    more » « less
  2. Fourcade, Yoan (Ed.)
  3. null (Ed.)
  4. Summary Bird species’ migratory patterns have typically been studied through individual observations and historical records. In recent years, the eBird citizen science project, which solicits observations from thousands of bird watchers around the world, has opened the door for a data-driven approach to understanding the large-scale geographical movements. Here, we focus on the North American tree swallow (Tachycineta bicolor) occurrence patterns throughout the eastern USA. Migratory departure dates for this species are widely believed by both ornithologists and casual observers to vary substantially across years, but the reasons for this are largely unknown. In this work, we present evidence that maximum daily temperature is predictive of tree swallow occurrence. Because it is generally understood that species occurrence is a function of many complex, high order interactions between ecological covariates, we utilize the flexible modelling approach that is offered by random forests. Making use of recent asymptotic results, we provide formal hypothesis tests for predictive significance of various covariates and also develop and implement a permutation-based approach for formally assessing interannual variations by treating the prediction surfaces that are generated by random forests as functional data. Each of these tests suggest that maximum daily temperature is important in predicting migration patterns. 
    more » « less
  5. Abstract Humans have a particularly strong connection with birds, driving the enormous popularity of residential bird feeding in much of the world.We conducted a web search to document US state wildlife management agency responses to two recent avian disease outbreaks, finding that 23 agencies made recommendations to cease feeding wild birds in 2021–2022.The psychological benefits of bird feeding for humans are well‐documented but often overlooked in management decisions in response to avian disease outbreaks.Likewise, ecological evidence does not necessarily support ceasing bird feeding to reduce the spread of every avian disease.Ecological and social science need to be applied in tandem to ensure that well‐intended guidance to cease feeding of birds does not have unintended consequences. 
    more » « less
  6. Abstract Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s–2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr −1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr −1 . Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to ‘climate debt’. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds’ resilience to the expected environmental changes in the future. 
    more » « less