skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Hoefer, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study markets with mixed manna, where m divisible goods and chores shall be divided among n agents to obtain a competitive equilibrium. Equilibrium allocations are known to satisfy many fairness and efficiency conditions. While a lot of recent work in fair division is restricted to linear utilities and chores, we focus on a substantial generalization to separable piecewise-linear and concave (SPLC) utilities and mixed manna. We first derive polynomial-time algorithms for markets with a constant number of items or a constant number of agents. Our main result is a polynomial-time algorithm for instances with a constant number of chores (as well as any number of goods and agents) under the condition that chores dominate the utility of the agents. Interestingly, this stands in contrast to the case when the goods dominate the agents utility in equilibrium, where the problem is known to be PPAD-hard even without chores.

    more » « less
    Free, publicly-accessible full text available September 13, 2024
  2. We study the fair and efficient allocation of a set of indivisible goods among agents, where each good has several copies, and each agent has an additively separable concave valuation function with a threshold. These valuations capture the property of diminishing marginal returns, and they are more general than the well-studied case of additive valuations. We present a polynomial-time algorithm that approximates the optimal Nash social welfare (NSW) up to a factor of e1/e ≈ 1.445. This matches with the state-of-the-art approximation factor for additive valuations. The computed allocation also satisfies the popular fairness guarantee of envy-freeness up to one good (EF1) up to a factor of 2 + ε. For instances without thresholds, it is also approximately Pareto-optimal. For instances satisfying a large market property, we show an improved approximation factor. Lastly, we show that the upper bounds on the optimal NSW introduced in Cole and Gkatzelis (2018) and Barman et al. (2018) have the same value. 
    more » « less
  3. We consider the task of assigning indivisible goods to a set of agents in a fair manner. Our notion of fairness is Nash social welfare, i.e., the goal is to maximize the geometric mean of the utilities of the agents. Each good comes in multiple items or copies, and the utility of an agent diminishes as it receives more items of the same good. The utility of a bundle of items for an agent is the sum of the utilities of the items in the bundle. Each agent has a utility cap beyond which he does not value additional items. We give a polynomial time approximation algorithm that maximizes Nash social welfare up to a factor of e^{1/{e}} ~ 1.445. The computed allocation is Pareto-optimal and approximates envy-freeness up to one item up to a factor of 2 + epsilon. 
    more » « less