A central goal in the long literature on fair division is the design of mechanisms that implement fair outcomes, despite the participants’ strategic behavior. We study this question by measuring the fairness of an allocation using the geometric mean of the agents’ values, known as the Nash social welfare (NSW). This objective is maximized by widely known concepts such as the Nash bargaining solution, proportional fairness, and the competitive equilibrium with equal incomes; we focus on (approximately) implementing this objective and analyze the Trading Post mechanism. We consider allocating goods that are substitutes or complements and show that this mechanism achieves an approximation of two for concave utility functions and becomes essentially optimal for complements, where it can reach [Formula: see text] for any [Formula: see text]. Moreover, we show that the Nash equilibria of this mechanism are pure and provide individual fairness in the sense of proportionality. 
                        more » 
                        « less   
                    
                            
                            Satiation in Fisher Markets and Approximation of Nash Social Welfare
                        
                    
    
            We study linear Fisher markets with satiation. In these markets, sellers have earning limits, and buyers have utility limits. Beyond applications in economics, they arise in the context of maximizing Nash social welfare when allocating indivisible items to agents. In contrast to markets with either earning or utility limits, markets with both limits have not been studied before. They turn out to have fundamentally different properties. In general, the existence of competitive equilibria is not guaranteed. We identify a natural property of markets (termed money clearing) that implies existence. We show that the set of equilibria is not always convex, answering a question posed in the literature. We design an FPTAS to compute an approximate equilibrium and prove that the problem of computing an exact equilibrium lies in the complexity class continuous local search ([Formula: see text]; i.e., the intersection of polynomial local search ([Formula: see text]) and polynomial parity arguments on directed graphs ([Formula: see text])). For a constant number of buyers or goods, we give a polynomial-time algorithm to compute an exact equilibrium. We show how (approximate) equilibria can be rounded and provide the first constant-factor approximation algorithm (with a factor of 2.404) for maximizing Nash social welfare when agents have capped linear (also known as budget-additive) valuations. Finally, we significantly improve the approximation hardness for additive valuations to [Formula: see text]. Funding: J. Garg was supported by the National Science Foundation [Grant CCF-1942321 (CAREER)]. M. Hoefer was supported by Deutsche Forschungsgemeinschaft [Grants Ho 3831/5-1, Ho 3831/6-1, and Ho 3831/7-1]. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1942321
- PAR ID:
- 10592429
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Mathematics of Operations Research
- Volume:
- 49
- Issue:
- 2
- ISSN:
- 0364-765X
- Page Range / eLocation ID:
- 1109 to 1139
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Vorobeychik, Y; Das, S; Nowe, A (Ed.)We study the problem of fair allocation of indivisible items when agents have ternary additive valuations --- each agent values each item at some fixed integer values a, b, or c that are common to all agents. The notions of fairness we consider are max Nash welfare (MNW), when a, b, and c are non-negative, and max egalitarian welfare (MEW). We show that for any distinct non-negative a, b, and c, maximizing Nash welfare is APX-hard --- i.e., the problem does not admit a PTAS unless P = NP. We also show that for any distinct a, b, and c, maximizing egalitarian welfare is APX-hard except for a few cases when b = 0 that admit efficient algorithms. These results make significant progress towards completely characterizing the complexity of computing exact MNW allocations and MEW allocations. En route, we resolve open questions left by prior work regarding the complexity of computing MNW allocations under bivalued valuations, and MEW allocations under ternary mixed manna.more » « less
- 
            null (Ed.)Mechanisms with money are commonly designed under the assumption that agents are quasi-linear, meaning they have linear disutility for spending money. We study the implications when agents with non-linear (specifically, convex) disutility for payments participate in mechanisms designed for quasi-linear agents. We first show that any mechanism that is truthful for quasi-linear buyers has a simple best response function for buyers with non-linear disutility from payments, in which each bidder simply scales down her value for each potential outcome by a fixed factor, equal to her target return on investment (ROI). We call such a strategy ROI-optimal. We prove the existence of a Nash equilibrium in which agents use ROI-optimal strategies for a general class of allocation problems. Motivated by online marketplaces, we then focus on simultaneous second-price auctions for additive bidders and show that all ROI-optimal equilibria in this setting achieve constant-factor approximations to suitable welfare and revenue benchmarks.more » « less
- 
            We study the problem of fairly allocating a set of indivisible goods among n agents with additive valuations. Envy freeness up to any good (EFX) is arguably the most compelling fairness notion in this context. However, the existence of an EFX allocation has not been settled and is one of the most important problems in fair division. Toward resolving this question, many impressive results show the existence of its relaxations. In particular, it is known that 0.618-EFX allocations exist and that EFX allocation exists if we do not allocate at most (n-1) goods. Reducing the number of unallocated goods has emerged as a systematic way to tackle the main question. For example, follow-up works on three- and four-agents cases, respectively, allocated two more unallocated goods through an involved procedure. In this paper, we study the general case and achieve sublinear numbers of unallocated goods. Through a new approach, we show that for every [Formula: see text], there always exists a [Formula: see text]-EFX allocation with sublinear number of unallocated goods and high Nash welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. We define the notion of rainbow cycle number [Formula: see text] in directed graphs. For all [Formula: see text] is the largest k such that there exists a k-partite graph [Formula: see text], in which each part has at most d vertices (i.e., [Formula: see text] for all [Formula: see text]); for any two parts Viand Vj, each vertex in Vihas an incoming edge from some vertex in Vjand vice versa; and there exists no cycle in G that contains at most one vertex from each part. We show that any upper bound on [Formula: see text] directly translates to a sublinear bound on the number of unallocated goods. We establish a polynomial upper bound on [Formula: see text], yielding our main result. Furthermore, our approach is constructive, which also gives a polynomial-time algorithm for finding such an allocation. Funding: J. Garg was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1942321]. R. Mehta was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1750436].more » « less
- 
            We study the problem of fairly allocating a set of indivisible goods among agents with matroid rank valuations: every good provides a marginal value of 0 or 1 when added to a bundle and valuations are submodular.We present a simple algorithmic framework, calledGeneral Yankee Swap, that can efficiently compute allocations that maximize any justice criterion (or fairness objective) satisfying some mild assumptions. Along with maximizing a justice criterion, General Yankee Swap is guaranteed to maximize utilitarian social welfare, ensure strategyproofness and use at most a quadratic number of valuation queries. We show how General Yankee Swap can be used to compute allocations for five different well-studied justice criteria: (a) Prioritized Lorenz dominance, (b) Maximin fairness, (c) Weighted leximin, (d) Max weighted Nash welfare, and (e) Max weightedp-mean welfare.In particular, this framework provides the first polynomial time algorithms to compute weighted leximin, max weighted Nash welfare and max weightedp-mean welfare allocations for agents with matroid rank valuations. We also extend this framework to the setting of binary chores — items with marginal values -1 or 0 — and similarly show that it can be used to maximize any justice criteria satisfying some mild assumptions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    