skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hoffman, Shannon M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Komagataella phaffii, also known asPichia pastoris, is a powerful host for recombinant protein production, in part due to its exceptionally strong and tightly controlled PAOX1promoter. MostK. phaffiibioprocesses for recombinant protein production rely on PAOX1to achieve dynamic control in two‐phase processes. Cells are first grown under conditions that repress PAOX1(growth phase), followed by methanol‐induced recombinant protein expression (production phase). In this study, we propose a methanol‐free approach for dynamic metabolic control inK. phaffiiusing optogenetics, which can help enhance input tunability and flexibility in process optimization and control. The light‐responsive transcription factor EL222 fromErythrobacter litoralisis used to regulate protein production from the PC120promoter inK. phaffiiwith blue light. We used two system designs to explore the advantages and disadvantages of coupling or decoupling EL222 integration with that of the gene of interest. We investigate the relationship between EL222 gene copy number and light dosage to improve production efficiency for intracellular and secreted proteins. Experiments in lab‐scale bioreactors demonstrate the feasibility of the outlined optogenetic systems as potential alternatives to conventional methanol‐inducible bioprocesses usingK. phaffii. 
    more » « less
    Free, publicly-accessible full text available May 24, 2026
  2. Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe–host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering. 
    more » « less
  3. null (Ed.)
  4. Abstract BackgroundFuture expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production betweenS. cerevisiae,O. polymorpha, andK. marxianusin glucose and cellulosic media at different temperatures. ResultsIn this work, we show that cellulosic emulsions hydrolyze rapidly at temperatures tolerable to yeast, reaching up to 40-fold higher conversion in the first hour compared to microcrystalline cellulose (MCC). To evaluate suitable conditions for the eSSF process, we explored the upper temperature limits for the thermotolerant yeastsKluyveromyces marxianusandOgataea polymorpha, as well asSaccharomyces cerevisiae, and observed robust fermentation at up to 46, 50, and 42 °C for each yeast, respectively. We show that the eSSF process reaches high ethanol titers in short processing times, and produces close to theoretical yields at temperatures as low as 30 °C. Finally, we demonstrate the transferability of the eSSF technology to other products by producing the advanced biofuel isobutanol in a light-controlled eSSF using optogenetic regulators, resulting in up to fourfold higher titers relative to MCC SSF. ConclusionsThe eSSF process addresses the main challenges of cellulosic biofuel production by increasing saccharification rate at temperatures tolerable to yeast. The rapid hydrolysis of these emulsions at low temperatures permits fermentation using non-thermotolerant yeasts, short processing times, low enzyme loads, and makes it possible to extend the process to chemicals other than ethanol, such as isobutanol. This transferability establishes the eSSF process as a platform for the sustainable production of biofuels and chemicals as a whole. 
    more » « less
  5. null (Ed.)