The distribution of spin–orbit angles for systems with wide-separation, tidally detached exoplanets offers a unique constraint on the prevalence of dynamically violent planetary evolution histories. Tidally detached planets provide a relatively unbiased view of the primordial stellar obliquity distribution, as they cannot tidally realign within the system lifetime. We present the third result from our Stellar Obliquities in Long-period Exoplanet Systems (SOLES) survey: a measurement of the Rossiter–McLaughlin effect across two transits of the tidally detached warm Jupiter TOI-1478 b with the WIYN/NEID and Keck/HIRES spectrographs, revealing a sky-projected spin–orbit angle
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract . Combining this new measurement with the full set of archival obliquity measurements, including two previous constraints from the SOLES survey, we demonstrate that, in single-star systems, tidally detached warm Jupiters are preferentially more aligned than closer-orbiting hot Jupiters. This finding has two key implications: (1) planets in single-star systems tend to form within aligned protoplanetary disks, and (2) warm Jupiters form more quiescently than hot Jupiters, which, in single-star systems, are likely perturbed into a misaligned state through planet–planet interactions in the post-disk-dispersal phase. We also find that lower-mass Saturns span a wide range of spin–orbit angles, suggesting a prevalence of planet–planet scattering and/or secularmore » -
Abstract TOI-2076 b is a sub-Neptune-sized planet (
R = 2.39 ± 0.10R ⊕) that transits a young (204 ± 50 MYr) bright (V = 9.2) K-dwarf hosting a system of three transiting planets. Using spectroscopic observations obtained with the NEID spectrograph on the WIYN 3.5 m Telescope, we model the Rossiter–McLaughlin effect of TOI-2076 b, and derive a sky-projected obliquity of . Using the size of the star (R = 0.775 ± 0.015R ⊙), and the stellar rotation period (P rot= 7.27 ± 0.23 days), we estimate an obliquity of (ψ < 34° at 95% confidence), demonstrating that TOI-2076 b is in a well-aligned orbit. Simultaneous diffuser-assisted photometry from the 3.5 m telescope at Apache Point Observatory rules out flares during the transit. TOI-2076 b joins a small but growing sample of young planets in compact multi-planet systems with well-aligned orbits, and is the fourth planet with an age ≲300 Myr in a multi-transiting system with an obliquity measurement. The low obliquity of TOI-2076 b and the presence of transit timing variations in the system suggest the TOI-2076 system likely formed via convergent disk migration in an initially well-aligned disk. -
Abstract We present the Distant Giants Survey, a three-year radial velocity campaign to measure P(DG∣CS), the conditional occurrence of distant giant planets (DG;
M p ∼ 0.3–13M J,P > 1 yr) in systems hosting a close-in small planet (CS;R p < 10R ⊕). For the past two years, we have monitored 47 Sun-like stars hosting small transiting planets detected by TESS. We present the selection criteria used to assemble our sample and report the discovery of two distant giant planets, TOI-1669 b and TOI-1694 c. For TOI-1669 b we find that ,P = 502 ± 16 days, ande < 0.27, while for TOI-1694 c, ,P = 389.2 ± 3.9 days, ande = 0.18 ± 0.05. We also confirmed the 3.8 days transiting planet TOI-1694 b by measuring a true mass ofM = 26.1 ± 2.2M ⊕. At the end of the Distant Giants Survey, we will incorporate TOI-1669 b and TOI-1694 c into our calculation of P(DG∣CS), a crucial statistic for understanding the relationship between outer giants and small inner companions. -
Abstract We detail the follow-up and characterization of a transiting exo-Venus identified by TESS, GJ 3929b (TOI-2013b), and its nontransiting companion planet, GJ 3929c (TOI-2013c). GJ 3929b is an Earth-sized exoplanet in its star’s Venus zone (
P b = 2.616272 ± 0.000005 days; Sb =S ⊕) orbiting a nearby M dwarf. GJ 3929c is most likely a nontransiting sub-Neptune. Using the new, ultraprecise NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak National Observatory, we are able to modify the mass constraints of planet b reported in previous works and consequently improve the significance of the mass measurement to almost 4σ confidence (M b = 1.75 ± 0.45M ⊕). We further adjust the orbital period of planet c from its alias at 14.30 ± 0.03 days to the likely true period of 15.04 ± 0.03 days, and we adjust its minimum mass to = 5.71 ± 0.92M ⊕. Using the diffuser-assisted ARCTIC imager on the ARC 3.5 m telescope at Apache Point Observatory, in addition to publicly available TESS and LCOGT photometry, we are able to constrain the radius of planet b toR p = 1.09 ± 0.04R ⊕. GJ 3929b is a top candidate for transmission spectroscopy in its size regime (TSM = 14more » -
Abstract We present the validation of two planets orbiting M dwarfs, TOI-1696b and TOI-2136b. Both planets are mini-Neptunes orbiting nearby stars, making them promising prospects for atmospheric characterization with the James Webb Space Telescope (JWST). We validated the planetary nature of both candidates using high-contrast imaging, ground-based photometry, and near-infrared radial velocities. Adaptive optics images were taken using the ShARCS camera on the 3 m Shane Telescope. Speckle images were taken using the NN-Explore Exoplanet Stellar Speckle Imager on the WIYN 3.5 m telescope. Radii and orbital ephemerides were refined using a combination of the Transiting Exoplanet Survey Satellite, the diffuser-assisted Astrophysical Research Consortium (ARC) Telescope Imaging Camera (ARCTIC) imager on the 3.5 m ARC telescope at Apache Point Observatory, and the 0.6 m telescope at Red Buttes Observatory. We obtained radial velocities using the Habitable-Zone Planet Finder on the 10 m Hobby–Eberly Telescope, which enabled us to place upper limits on the masses of both transiting planets. TOI-1696b (
P = 2.5 days;R p = 3.24R ⊕;M p < 56.6M ⊕) falls into a sparsely populated region of parameter space considering its host star’s temperature (T eff= 3168 K, M4.5), as planets of its size are quite rare around mid- to late-M dwarfs. On the other hand, TOI-2136bmore » -
Abstract Exoplanet systems with multiple transiting planets are natural laboratories for testing planetary astrophysics. One such system is HD 191939 (TOI 1339), a bright (
V = 9) and Sun-like (G9V) star, which TESS found to host three transiting planets (b, c, and d). The planets have periods of 9, 29, and 38 days each with similar sizes from 3 to 3.4R ⊕. To further characterize the system, we measured the radial velocity (RV) of HD 191939 over 415 days with Keck/HIRES and APF/Levy. We find thatM b = 10.4 ± 0.9M ⊕andM c = 7.2 ± 1.4M ⊕, which are low compared to most known planets of comparable radii. The RVs yield only an upper limit onM d (<5.8M ⊕at 2σ ). The RVs further reveal a fourth planet (e) with a minimum mass of 0.34 ± 0.01M Jupand an orbital period of 101.4 ± 0.4 days. Despite its nontransiting geometry, secular interactions between planet e and the inner transiting planets indicate that planet e is coplanar with the transiting planets (Δi < 10°). We identify a second high-mass planet (f) with 95% confidence intervals on mass between 2 and 11M Jupand period between 1700 and 7200 days, based on a joint analysis of RVs and astrometry from Gaia and Hipparcos. As a bright starmore »