skip to main content


Search for: All records

Creators/Authors contains: "Holden, Nina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We demonstrate how to obtain integrability results for the Schramm‐Loewner evolution (SLE) from Liouville conformal field theory (LCFT) and the mating‐of‐trees framework for Liouville quantum gravity (LQG). In particular, we prove an exact formula for the law of a conformal derivative of a classical variant of SLE called . Our proof is built on two connections between SLE, LCFT, and mating‐of‐trees. Firstly, LCFT and mating‐of‐trees provide equivalent but complementary methods to describe natural random surfaces in LQG. Using a novel tool that we call theuniform embeddingof an LQG surface, we extend earlier equivalence results by allowing fewer marked points and more generic singularities. Secondly, the conformal welding of these random surfaces produces SLE curves as their interfaces. In particular, we rely on the conformal welding results proved in our companion paper Ang, Holden and Sun (2023). Our paper is an essential part of a program proving integrability results for SLE, LCFT, and mating‐of‐trees based on these two connections.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025