Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The statistical properties of uniform momentum zones (UMZs) are extracted from laboratory and field measurements in rough wall turbulent boundary layers to formulate a set of stochastic models for the simulation of instantaneous velocity profiles. A spatiotemporally resolved velocity dataset, covering a field of view of
, was obtained in the atmospheric surface layer using super-large-scale particle image velocimetry (SLPIV), as part of the Grand-scale Atmospheric Imaging Apparatus (GAIA). Wind tunnel data from a previous study are included for comparison (Heisel$8 \times 9\,{\rm m}^2$ et al. ,J. Fluid Mech. , vol. 887, 2020, R1). The probability density function of UMZ attributes such as their thickness, modal velocity and averaged vertical velocity are built at varying elevations and modelled using log-normal and Gaussian distributions. Inverse transform sampling of the distributions is used to generate synthetic step-like velocity profiles that are spatially and temporally uncorrelated. Results show that in the wide range of wall-normal distances and up to$Re_\tau$ investigated here, shear velocity scaling is manifested in the velocity jump across shear interfaces between adjacent UMZs, and attached eddy behaviour is observed in the linear proportionality between UMZ thickness and their wall normal location. These very same characteristics are recovered in the generated instantaneous profiles, using both fully stochastic and data-driven hybrid stochastic (DHS) models, which address, in different ways, the coupling between modal velocities and UMZ thickness. Our method provides a stochastic approach for generating an ensemble of instantaneous velocity profiles, consistent with the structural organisation of UMZs, where the ensemble reproduces the logarithmic mean velocity profile and recovers significant portions of the Reynolds stresses and, thus, of the streamwise and vertical velocity variability.$\sim O(10^6)$ Free, publicly-accessible full text available January 25, 2025 -
Abstract Understanding the organization and dynamics of turbulence structures in the atmospheric surface layer (ASL) is important for fundamental and applied research in different fields, including weather prediction, snow settling, particle and pollutant transport, and wind energy. The main challenges associated with probing and modeling turbulence in the ASL are: i) the broad range of turbulent scales associated with the different eddies present in high Reynolds-number boundary layers ranging from the viscous scale (𝒪(mm)) up to large energy-containing structures (𝒪(km)); ii) the non-stationarity of the wind conditions and the variability associated with the daily cycle of the atmospheric stability; iii) the interactions among eddies of different sizes populating different layers of the ASL, which contribute to momentum, energy, and scalar turbulent fluxes. Creative and innovative measurement techniques are required to probe near-surface turbulence by generating spatio-temporally-resolved data in the proximity of the ground and, at the same time, covering the entire ASL height with large enough streamwise extent to characterize the dynamics of larger eddies evolving aloft. To this aim, the U.S. National Science Foundation sponsored the development of the Grand-scale Atmospheric Imaging Apparatus (GAIA) enabling super-large snow particle image velocimetry (SLPIV) in the near-surface region of the ASL. This inaugural version of GAIA provides a comprehensive measuring system by coupling SLPIV and two scanning Doppler LiDARs to probe the ASL at an unprecedented resolution. A field campaign performed in 2021–2022 and its preliminary results are presented herein elucidating new research opportunities enabled by the GAIA measuring system.
-
We present a field study of snow settling dynamics based on simultaneous measurements of the atmospheric flow field and snow particle trajectories. Specifically, a super-large-scale particle image velocimetry (SLPIV) system using natural snow particles as tracers is deployed to quantify the velocity field and identify vortex structures in a 22 m $\times$ 39 m field of view centred 18 m above the ground. Simultaneously, we track individual snow particles in a 3 m $\times$ 5 m sample area within the SLPIV using particle tracking velocimetry. The results reveal the direct linkage among vortex structures in atmospheric turbulence, the spatial distribution of snow particle concentration and their settling dynamics. In particular, with snow turbulence interaction at near-critical Stokes number, the settling velocity enhancement of snow particles is multifold, and larger than what has been observed in previous field studies. Super-large-scale particle image velocimetry measurements show a higher concentration of snow particles preferentially located on the downward side of the vortices identified in the atmospheric flow field. Particle tracking velocimetry, performed on high resolution images around the reconstructed vortices, confirms the latter trend and provides statistical evidence of the acceleration of snow particles, as they move toward the downward side of vortices. Overall, the simultaneous multi-scale particle imaging presented here enables us to directly quantify the salient features of preferential sweeping, supporting it as an underlying mechanism of snow settling enhancement in the atmospheric surface layer.more » « less
-
null (Ed.)The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider three snowfall events under vastly different levels of atmospheric turbulence. We characterize the size and morphology of the snow particles, and we simultaneously image their velocity, acceleration and relative concentration over vertical planes approximately $30\ \textrm {m}^2$ in area. We find that turbulence-driven settling enhancement explains otherwise contradictory trends between the particle size and velocity. The estimates of the Stokes number and the correlation between vertical velocity and local concentration are consistent with the view that the enhanced settling is rooted in the preferential sweeping mechanism. When the snow vertical velocity is large compared to the characteristic turbulence velocity, the crossing trajectories effect results in strong accelerations. When the conditions of preferential sweeping are met, the concentration field is highly non-uniform and clustering appears over a wide range of scales. These clusters, identified for the first time in a naturally occurring flow, display the signature features seen in canonical settings: power-law size distribution, fractal-like shape, vertical elongation and large fall speed that increases with the cluster size. These findings demonstrate that the fundamental phenomenology of particle-laden turbulence can be leveraged towards a better predictive understanding of snow precipitation and ground snow accumulation. They also demonstrate how environmental flows can be used to investigate dispersed multiphase flows at Reynolds numbers not accessible in laboratory experiments or numerical simulations.more » « less