Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
In modern computing systems, jobs' resource requirements often vary over time. Accounting for this temporal variability during job scheduling is essential for meeting performance goals. However, theoretical understanding on how to schedule jobs with time-varying resource requirements is limited. Motivated by this gap, we propose a new setting of the stochastic bin-packing problem in service systems that allows for time-varying job resource requirements, also referred to as 'item sizes' in traditional bin-packing terms. In this setting, a job or 'item' must be dispatched to a server or 'bin' upon arrival. Its resource requirement may vary over time while in service, following a Markovian assumption. Once the job's service is complete, it departs from the system. Our goal is to minimize the expected number of active servers, or 'non-empty bins', in steady state.
Under our problem formulation, we develop a job dispatch policy, named Join-Reqesting-Server (JRS). Broadly, JRS lets each server independently evaluate its current job configuration and decide whether to accept additional jobs, balancing the competing objectives of maximizing throughput and minimizing the risk of resource capacity overruns. The JRS dispatcher then utilizes these individual evaluations to decide which server to dispatch each arriving job to. The theoretical performance guarantee of JRS is in the asymptotic regime where the job arrival rate scales large linearly with respect to a scaling factor r. We show that JRS achieves an additive optimality gap of O(√r) in the objective value, where the optimal objective value is Θ(r). When specialized to constant job resource requirements, our result improves upon the state-of-the-art o(r) optimality gap. Our technical approach highlights a novel policy conversion framework that reduces the policy design problem into a single-server problem.
Free, publicly-accessible full text available December 7, 2024 -
We study the infinite-horizon Restless Bandit problem with the average reward criterion, under both discrete-time and continuous-time settings. A fundamental goal is to design computationally efficient policies that achieve a diminishing optimality gap as the number of arms, N, grows large. Existing results on asymptotic optimality all rely on the uniform global attractor property (UGAP), a complex and challenging-to-verify assumption. In this paper, we propose a general, simulation-based framework, Follow-the-Virtual-Advice, that converts any single-armed policy into a policy for the original N-armed problem. This is done by simulating the single-armed policy on each arm and carefully steering the real state towards the simulated state. Our framework can be instantiated to produce a policy with an O(1/pN) optimality gap. In the discrete-time setting, our result holds under a simpler synchronization assumption, which covers some problem instances that violate UGAP. More notably, in the continuous-time setting, we do not require any additional assumptions beyond the standard unichain condition. In both settings, our work is the first asymptotic optimality result that does not require UGAP.more » « less
-
Free, publicly-accessible full text available November 1, 2024