skip to main content


Search for: All records

Creators/Authors contains: "Horner, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the discovery of TOI-1994b, a low-mass brown dwarf transiting a hot subgiant star on a moderately eccentric orbit. TOI-1994 has an effective temperature of7700410+720K, Vmagnitude of 10.51 mag and log(g) of3.9820.065+0.067. The brown dwarf has a mass of22.12.5+2.6MJ, a period of 4.034 days, an eccentricity of0.3410.059+0.054, and a radius of1.2200.071+0.082RJ. TOI-1994b is more eccentric than other transiting brown dwarfs with similar masses and periods. The population of low-mass brown dwarfs may have properties similar to planetary systems if they were formed in the same way, but the short orbital period and high eccentricity of TOI-1994b may contrast this theory. An evolved host provides a valuable opportunity to understand the influence stellar evolution has on the substellar companion’s fundamental properties. With precise age, mass, and radius, the global analysis and characterization of TOI-1994b augments the small number of transiting brown dwarfs and allows the testing of substellar evolution models.

     
    more » « less
  2. ABSTRACT We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP  = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P  = 8.872 d, 0.394$^{+0.035}_{-0.038}$), TOI-2145 b (P  = 10.261 d, e  = $0.208^{+0.034}_{-0.047}$), and TOI-2497 b (P  = 10.656 d, e  = $0.195^{+0.043}_{-0.040}$). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log  g <4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; $5.26^{+0.38}_{-0.37}$ MJ (TOI-2145 b) and 4.82 ± 0.41 MJ (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies. 
    more » « less
    Free, publicly-accessible full text available March 14, 2024
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
    ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $\rm {M_J}$ (43.9 ± 7.3 $\, M_{\rm \oplus}$), a radius of RP = 0.639 ± 0.013 $\rm {R_J}$ (7.16 ± 0.15 $\, \mathrm{ R}_{\rm \oplus}$), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$ $\rm {days}$. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 $\rm {M_{sun}}$, R* = 1.888 ± 0.033 $\rm {R_{sun}}$, Teff = 6075 ± 90 $\rm {K}$, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems. 
    more » « less
  8. Abstract

    The hot Jupiter HD 217107 b was one of the first exoplanets detected using the radial velocity (RV) method, originally reported in the literature in 1999. Today, precise RV measurements of this system span more than 20 years, and there is clear evidence of a longer‐period companion, HD 217107 c. Interestingly, both the short‐period planet (Pb ∼ 7.13 d) and long‐period planet (Pc ∼ 5059d) have significantly eccentric orbits (eb ∼ 0.13andec ∼ 0.40). We present 42 additional RV measurements of this system obtained with the MINERVA telescope array and carry out a joint analysis with previously published RV measurements from four different facilities. We confirm and refine the previously reported orbit of the long‐period companion. HD 217107 b is one of a relatively small number of hot Jupiters with an eccentric orbit, opening up the possibility of detecting the precession of the planetary orbit due to general relativistic effects and perturbations from other planets in the system. In this case, the argument of periastron,ω, is predicted to change at the level of0.8century−1. Despite the long time baseline of our observations and the high quality of the RV measurements, we are only able to constrain the precession to becentury−1. We discuss the limitations of detecting the subtle effects of precession in exoplanet orbits using RV data.

     
    more » « less
  9. null (Ed.)