skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Horton, Brian K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. Abstract The northern Andes of southern Colombia contain a rich geologic history recorded by Proterozoic to Cenozoic metamorphic, igneous, and sedimentary rocks. The region plays a pivotal role in understanding the evolution of topography in northwestern South America and the development of large river systems, such as the Amazon, Orinoco, and Magdalena rivers. However, understanding of the basement framework has been hindered by challenging access, security concerns, tropical climate, and outcrop scarcity. Further, an insufficient geochronologic characterization of Andean basement complicates provenance interpretations of adjacent basins and restricts understanding of the paleogeographic evolution of southern Colombia. To address these issues, this paper presents a zircon U-Pb geochronological dataset derived for 24 bedrock samples and 19 modern river samples. The zircon U-Pb results reveal that the Eastern Cordillera of southern Colombia is underlain by basement rocks that originated in various tectonic events since ca. 1.5 Ga, including the accretion of discrete terranes. The oldest rocks, found in the Garzon Massif, are high-grade metamorphic rocks with contrasting Proterozoic protolith crystallization ages. Whereas the SW part of the massif formed during the Putumayo Orogeny (ca. 1.2–0.9 Ga), we report orthogneisses for the NE segment with protoliths formed at ca. 1.5 Ga, representing the NW continuation of the Rio Negro Jurena province of the Amazonian Craton. In contrast, crystalline rocks of the Central Cordillera primarily consist of Permian–Triassic (ca. 270–250 Ma) and Jurassic–Cretaceous (ca. 180–130 Ma) igneous rocks formed in a magmatic arc. In southernmost Colombia, the Putumayo Mountains mainly consist of Jurassic–Cretaceous (180–130 Ma) plutonic and volcanic rocks. Furthermore, we analyzed the heavy mineral abundances in modern river sands in southern Colombia (spanning 1°N–5°N) and found that key minerals such as garnet and epidote can be utilized to trace high-grade metamorphic and igneous lithologies, respectively, in the river catchments. The differentiation of basement ages for separate tectonic provinces, combined with heavy mineral abundances in modern sands, can serve as unique fingerprints in provenance analyses to trace the topographic and exhumational evolution of different Andean regions through time. 
    more » « less
  4. The south-central Chile and Argentina margin experienced a regional phase of extensional tectonics during the Oligocene–early Miocene, forming several basins across the forearc, Andean Cordillera, and retroarc regions. These basins accumulated thick successions of volcanic and sedimentary rocks. Subsequently, Neogene contractional tectonics led to the development of the current Andean Cordillera and the deposition of synorogenic clastic deposits in foreland basins. Traditionally, the Cura Mallín Formation, comprising a lower volcanic unit (CMV) and an upper sedimentary unit (CMS), has been interpreted to have formed during the Oligocene–early Miocene extensional phase. However, some studies propose deposition of the CMS in a foreland basin during the early–late Miocene. To unravel the transition from extensional to contractional tectonics in the Andes of south-central Chile and Argentina, we conducted new geochronological analyses (U-Pb, LA-ICP-MS) and integrated these results with structural, stratigraphic, and sedimentological observations in key sections within the CMS and the overlying Trapa-Trapa Formation in the Principal Cordillera along the Chile-Argentina border (37°–38°S). Our findings indicate that only the lower part of the CMS was deposited in an extensional setting, as evidenced by the presence of an inverted extensional wedge dated at ∼20 Ma. The middle-upper CMS (∼19 to 9 Ma) and contemporaneous units to the east exhibit evidence of syncontractional deformation, suggesting deposition in a foreland basin generated by shortening of the western Principal Cordillera. Around 9 Ma, uplift of the Agrio and Chos Malal fold and thrust belts, east of the Principal Cordillera, led to segmentation of the foreland basin. The Trapa Trapa Formation was deposited in a hinterland basin, with sediment sourced from the east. After ∼6.5 Ma, major contractional deformation shifted westward, resulting in intense folding of the CMS and Trapa Trapa Formation and subsequent thrusting of the western Principal Cordillera over the Central Depression. Our study suggests that deformation progressed toward the eastern foreland during the early to late Miocene and then shifted toward the western forearc during the late Miocene to Pleistocene. 
    more » « less
  5. The Middle Jurassic–Early Cretaceous evolution of the Neuquén Basin is traditionally attributed to a long phase of thermal subsidence. However, recent works have challenged this model. In view of this, we study the Late Jurassic Tordillo Formation, a non‐marine depositional unit that marks a shift to regional regression across the basin. Previous studies propose different causes for this regression, including the growth of the magmatic arc in the west, uplift in the south or extension in the north. We studied the Tordillo Formation in sections located at an intermediate position in the Neuquén Basin, in order to understand the tectonic processes active during sedimentation. We present evidence of normal faulting within the Tordillo Formation and the base of the overlying Vaca Muerta Formation. Some of these faults can be attributed as syndepositional. We characterize the Tordillo Formation as part of a distal fan‐playa lake depositional system with a contemporaneous western magmatic arc as the main source of sediment. When compared to the Late Triassic–Early Jurassic NE to NNE‐oriented rifting, which marks the opening of the Neuquén Basin, the Late Jurassic extension shows a switch in stress orientation; the latter is orthogonal to the north‐trending subduction zone. We interpret this change as a renewed phase of back‐arc extension induced by slab rollback along with minor distributed intraplate extension prior to opening of the South Atlantic Ocean. 
    more » « less
  6. Unconformities in foreland basins may be generated by tectonic processes that operate in the basin, the adjacent fold–thrust belt or the broader convergent margin. Foreland basin unconformities represent shifts from high accommodation to non-depositional or erosional conditions in which the interruption of subsidence precludes the net accumulation of sediment. This study explores the genesis of long-duration unconformities (>1–20 myr) and condensed stratigraphic sections by considering modern and ancient examples from the Andes of western South America. These case studies highlight the potential geodynamic mechanisms of accommodation reduction and hiatus development in Andean-type retroarc foreland settings, including: (1) shortening-induced uplift in the frontal thrust belt and proximal foreland; (2) the growth and advance of a broad, low-relief flexural forebulge; (3) the uplift of intraforeland basement blocks; (4) tectonic quiescence with regional isostatic rebound; (5) the end of thrust loading and flexural subsidence during oblique convergence; (6) diminished accommodation or sediment supply due to changes in sea-level, climate, erosion or transport; (7) basinwide uplift during flat-slab subduction; and (8) dynamic uplift associated with slab window formation, slab break-off, elevated intraplate (in-plane) stress, or related mantle process. These contrasting mechanisms can be distinguished on the basis of the spatial distribution, structural context, stratigraphic position, palaeoenvironmental conditions, and duration of unconformities and condensed sections. Thematic collection: This article is part of the Fold-and-thrust belts collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts 
    more » « less