skip to main content

Search for: All records

Creators/Authors contains: "Hossain, H M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning models are bounded by the credibility of ground truth data used for both training and testing. Regardless of the problem domain, this ground truth annotation is objectively manual and tedious as it needs considerable amount of human intervention. With the advent of Active Learning with multiple annotators, the burden can be somewhat mitigated by actively acquiring labels of most informative data instances. However, multiple annotators with varying degrees of expertise poses new set of challenges in terms of quality of the label received and availability of the annotator. Due to limited amount of ground truth information addressing the variabilities of Activity of Daily Living (ADLs), activity recognition models using wearable and mobile devices are still not robust enough for real-world deployment. In this paper, we propose an active learning combined deep model which updates its network parameters based on the optimization of a joint loss function. We then propose a novel annotator selection model by exploiting the relationships among the users while considering their heterogeneity with respect to their expertise, physical and spatial context. Our proposed model leverages model-free deep reinforcement learning in a partially observable environment setting to capture the actionreward interaction among multiple annotators. Our experimentsmore »in real-world settings exhibit that our active deep model converges to optimal accuracy with fewer labeled instances and achieves 8% improvement in accuracy in fewer iterations.« less
  2. Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in themore »presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average.« less
  3. Predicting the occupancy related information in an environment has been investigated to satisfy the myriad requirements of various evolving pervasive, ubiquitous, opportunistic and participatory sensing applications. Infrastructure and ambient sensors based techniques have been leveraged largely to determine the occupancy of an environment incurring a significant deployment and retrofitting costs. In this paper, we advocate an infrastructure-less zero-configuration multimodal smartphone sensor-based techniques to detect fine-grained occupancy information. We propose to exploit opportunistically smartphones' acoustic sensors in presence of human conversation and motion sensors in absence of any conversational data. We develop a novel speaker estimation algorithm based on unsupervised clustering of overlapped and non-overlapped conversational data to determine the number of occupants in a crowded environment. We also design a hybrid approach combining acoustic sensing opportunistically with locomotive model to further improve the occupancy detection accuracy. We evaluate our algorithms in different contexts, conversational, silence and mixed in presence of 10 domestic users. Our experimental results on real-life data traces collected from 10 occupants in natural setting show that using this hybrid approach we can achieve approximately 0.76 error count distance for occupancy detection accuracy on average.
  4. Accurate estimation of localized occupancy related information in real time enables a broad range of intelligent smart environment applications. A large number of studies using heterogeneous sensor arrays reflect the myriad requirements of various emerging pervasive, ubiquitous and participatory sensing applications. In this paper, we introduce a zero-configuration and infrastructure-less smartphone based location specific occupancy estimation model. We opportunistically exploit smartphone’s acoustic sensors in a conversing environment and motion sensors in absence of any conversational data. We demonstrate a novel speaker estimation algorithm based on unsupervised clustering of overlapped and non-overlapped conversational data and a change point detection algorithm for locomotive motion of the users to infer the occupancy. We augment our occupancy detection model with a fingerprinting based methodology using smartphone’s magnetometer sensor to accurately assimilate location information of any gathering. We postulate a novel crowdsourcing-based approach to annotate the semantic location of the occupancy. We evaluate our algorithms in different contexts; conversational, silence and mixed in presence of 10 domestic users. Our experimental results on real-life data traces in natural settings show that using this hybrid approach, we can achieve approximately 0.76 error count distance for occupancy detection accuracy on average.