Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We introduce a new, open-source, Python-based package,extrabol, for inferring the bolometric light curve evolution of extragalactic thermal transients.extraboluses non-parametric Gaussian Process regression for light curve estimation that requires minimal user interaction.extrabolis available via GitHub.more » « less
-
Abstract We present multi-epoch optical spectropolarimetric and imaging polarimetric observations of the nearby Type II supernova (SN) 2023ixf discovered in M101 at a distance of 6.85 Mpc. The first imaging polarimetric observations were taken +2.33 days (60085.08 MJD) after the explosion, while the last imaging polarimetric data points (+73.19 and +76.19 days) were acquired after the fall from the light-curve plateau. At +2.33 days there is strong evidence of circumstellar material (CSM) interaction in the spectra and the light curve. A significant level of intrinsic polarizationpr = 1.02% ± 0.07% is seen during this phase, which indicates that this CSM is aspherical. We find that the polarization evolves with time toward the interstellar polarization level during the photospheric phase, which suggests that the recombination photosphere is spherically symmetric. There is a jump in polarization (pr = 0.45% ± 0.08% andpr = 0.62% ± 0.08%) at +73.19 and +76.19 days when the light curve falls from the plateau. This is a phase where polarimetric data are sensitive to nonspherical inner ejecta or a decrease in optical depth into the single-scattering regime. We also present spectropolarimetric data that reveal line (de)polarization during most of the observed epochs. In addition, at +14.50 days we see an “inverse P Cygni” profile in the H and He line polarization, which clearly indicates the presence of asymmetrically distributed material overlying the photosphere. The overall temporal evolution of the polarization is typical for Type II SNe, but the high level of polarization during the rising phase has only been observed in SN 2023ixf.more » « lessFree, publicly-accessible full text available March 20, 2026
-
Abstract Photometric classifications of supernova (SN) light curves have become necessary to utilize the full potential of large samples of observations obtained from wide-field photometric surveys, such as the Zwicky Transient Facility (ZTF) and the Vera C. Rubin Observatory. Here, we present a photometric classifier for SN light curves that does not rely on redshift information and still maintains comparable accuracy to redshift-dependent classifiers. Our new package, Superphot+, uses a parametric model to extract meaningful features from multiband SN light curves. We train a gradient-boosted machine with fit parameters from 6061 ZTF SNe that pass data quality cuts and are spectroscopically classified as one of five classes: SN Ia, SN II, SN Ib/c, SN IIn, and SLSN-I. Without redshift information, our classifier yields a class-averagedF1-score of 0.61 ± 0.02 and a total accuracy of 0.83 ± 0.01. Including redshift information improves these metrics to 0.71 ± 0.02 and 0.88 ± 0.01, respectively. We assign new class probabilities to 3558 ZTF transients that show SN-like characteristics (based on the ALeRCE Broker light-curve and stamp classifiers) but lack spectroscopic classifications. Finally, we compare our predicted SN labels with those generated by the ALeRCE light-curve classifier, finding that the two classifiers agree on photometric labels for 82% ± 2% of light curves with spectroscopic labels and 72% ± 0% of light curves without spectroscopic labels. Superphot+ is currently classifying ZTF SNe in real time via the ANTARES Broker, and is designed for simple adaptation to six-band Rubin light curves in the future.more » « less
-
Abstract We present a series of high-resolution echelle spectra of SN 2023ixf in M101, obtained nightly during the first week or so after discovery using PEPSI on the Large Binocular Telescope. NaiD absorption in these spectra indicates a host reddening ofE(B−V) = 0.031 mag and a systemic velocity of +7 km s−1relative to the average redshift of M101. Dramatic changes are seen in the strength and shape of strong emission lines emitted by circumstellar material (CSM), including Heiiλ4686, Civλλ5801,5811, Hα, and Nivλλ7109,7123. In general, these narrow lines broaden to become intermediate-width lines before disappearing from the spectrum within a few days, indicating a limited extent to the dense CSM of around 20–30 au (or ≲1014.7cm). Hαpersists in the spectrum for about a week as an intermediate-width emission line with P Cyg absorption at 700–1300 km s−1arising in the post-shock shell of swept-up CSM. Early narrow emission lines are blueshifted and indicate an expansion speed in the pre-shock CSM of about 115 km s−1, but with even broader emission in higher-ionization lines. This is faster than the normal winds of red supergiants, suggesting some mode of eruptive mass loss from the progenitor or radiative acceleration of the CSM. A lack of narrow blueshifted absorption suggests that most of the CSM is not along our line of sight. This and several other clues indicate that the CSM of SN 2023ixf is significantly aspherical. We find that CSM lines disappear after a few days because the asymmetric CSM is engulfed by the supernova photosphere.more » « less
-
Abstract SN 2023ixf was discovered in M101 within a day of the explosion and rapidly classified as a Type II supernova with flash features. Here we present ultraviolet (UV) spectra obtained with the Hubble Space Telescope 14, 19, 24, and 66 days after the explosion. Interaction between the supernova ejecta and circumstellar material (CSM) is seen in the UV throughout our observations in the flux of the first three epochs and asymmetric Mgiiemission on day 66. We compare our observations to CMFGEN supernova models that include CSM interaction ( M⊙yr−1) and find that the power from CSM interaction is decreasing with time, fromLsh≈ 5 × 1042erg s−1toLsh≈ 1 × 1040erg s−1between days 14 and 66. We examine the contribution of individual atomic species to the spectra on days 14 and 19, showing that the majority of the features are dominated by iron, nickel, magnesium, and chromium absorption in the ejecta. The UV spectral energy distribution of SN 2023ixf sits between that of supernovae, which show no definitive signs of CSM interaction, and those with persistent signatures assuming the same progenitor radius and metallicity. Finally, we show that the evolution and asymmetric shape of the Mgiiλλ2796, 2802 emission are not unique to SN 2023ixf. These observations add to the early measurements of dense, confined CSM interaction, tracing the mass-loss history of SN 2023ixf to ∼33 yr prior to the explosion and the density profile to a radius of ∼5.7 × 1015cm. They show the relatively short evolution from a quiescent red supergiant wind to high mass loss.more » « less
-
Abstract We present photometric and spectroscopic observations of SN 2023fyq, a Type Ibn supernova (SN) in the nearby galaxy NGC 4388 (D≃ 18 Mpc). In addition, we trace the 3 yr long precursor emission at the position of SN 2023fyq using data from DLT40, ATLAS, Zwicky Transient Facility, ASAS-SN, Swift, and amateur astronomer Koichi Itagaki. The double-peaked postexplosion light curve reaches a luminosity of ∼1043erg s−1. The strong intermediate-width He lines observed in the nebular spectrum imply the interaction is still active at late phases. We found that the precursor activity in SN 2023fyq is best explained by the mass transfer in a binary system involving a low-mass He star and a compact companion. An equatorial disk is likely formed in this process (∼0.6M⊙), and the interaction of SN ejecta with this disk powers the second peak of the SN. The early SN light curve reveals the presence of dense extended material (∼0.3M⊙) at ∼3000R⊙ejected weeks before the SN explosion, likely due to final-stage core silicon burning or runaway mass transfer resulting from binary orbital shrinking, leading to rapid-rising precursor emission within ∼30 days prior to explosion. The final explosion could be triggered either by the core collapse of the He star or by the merger of the He star with a compact object. SN 2023fyq, along with SN 2018gjx and SN 2015G, forms a unique class of Type Ibn SNe, which originate in binary systems and are likely to exhibit detectable long-lasting pre-explosion outbursts with magnitudes ranging from −10 to −13.more » « less
-
Abstract We present upgraded infrastructure for Searches After Gravitational waves Using ARizona Observatories (SAGUARO) during LIGO, Virgo, and KAGRA’s fourth gravitational-wave (GW) observing run (O4). These upgrades implement many of the lessons we learned after a comprehensive analysis of potential electromagnetic counterparts to the GWs discovered during the previous observing run. We have developed a new web-based target and observation manager (TOM) that allows us to coordinate sky surveys, vet potential counterparts, and trigger follow-up observations from one centralized portal. The TOM includes software that aggregates all publicly available information on the light curves and possible host galaxies of targets, allowing us to rule out potential contaminants like active galactic nuclei, variable stars, solar system objects, and preexisting supernovae, as well as to assess the viability of any plausible counterparts. We have also upgraded our image-subtraction pipeline by assembling deeper reference images and training a new neural-network-based real–bogus classifier. These infrastructure upgrades will aid coordination by enabling the prompt reporting of observations, discoveries, and analysis to the GW follow-up community, and put SAGUARO in an advantageous position to discover kilonovae in the remainder of O4 and beyond. Many elements of our open-source software stack have broad utility beyond multimessenger astronomy, and will be particularly relevant in the “big data” era of transient discoveries by the Vera C. Rubin Observatory.more » « less
-
ABSTRACT We present the most comprehensive catalogue to date of Type I superluminous supernovae (SLSNe), a class of stripped-envelope supernovae (SNe) characterized by exceptionally high luminosities. We have compiled a sample of 262 SLSNe reported through 2022 December 31. We verified the spectroscopic classification of each SLSN and collated an exhaustive data set of ultraviolet, optical, and infrared photometry totalling over 30 000 photometric detections. Using these data, we derive observational parameters such as the peak absolute magnitudes, rise and decline time-scales, as well as bolometric luminosities, temperature, and photospheric radius evolution for all SLSNe. Additionally, we model all light curves using a hybrid model that includes contributions from both a magnetar central engine and the radioactive decay of $$^{56}$$Ni. We explore correlations among various physical and observational parameters, and recover the previously found relation between ejecta mass and magnetar spin, as well as the overall progenitor pre-explosion mass distribution with a peak at $$\approx 6.5$$ M$$_\odot$$. We find no significant redshift dependence for any parameter, and no evidence for distinct subtypes of SLSNe. We find that only a small fraction of SLSNe, $$\lt 3$$ per cent, are best fit with a significant radioactive decay component $$\gtrsim 50$$ per cent. We provide several analytical tools designed to simulate typical SLSN light curves across a broad range of wavelengths and phases, enabling accurate K-corrections, bolometric scaling calculations, and inclusion of SLSNe in survey simulations or future comparison works.more » « less
-
Abstract Stripped-envelope core-collapse supernovae can be divided into two broad classes: the common Type Ib/c supernovae (SNe Ib/c), powered by the radioactive decay of56Ni, and the rare superluminous supernovae (SLSNe), most likely powered by the spin-down of a magnetar central engine. Up to now, the intermediate regime between these two populations has remained mostly unexplored. Here, we present a comprehensive study of 40luminous supernovae(LSNe), SNe with peak magnitudes ofMr= −19 to −20 mag, bound by SLSNe on the bright end and by SNe Ib/c on the dim end. Spectroscopically, LSNe appear to form a continuum between Type Ic SNe and SLSNe. Given their intermediate nature, we model the light curves of all LSNe using a combined magnetar plus radioactive decay model and find that they are indeed intermediate, not only in terms of their peak luminosity and spectra, but also in their rise times, power sources, and physical parameters. We subclassify LSNe into distinct groups that are either as fast evolving as SNe Ib/c or as slow evolving as SLSNe, and appear to be either radioactively or magnetar powered, respectively. Our findings indicate that LSNe are powered by either an overabundant production of56Ni or by weak magnetar engines, and may serve as the missing link between the two populations.more » « less
-
Abstract In 2019 November, we began operating Finding Luminous and Exotic Extragalactic Transients (FLEET), a machine-learning algorithm designed to photometrically identify Type I superluminous supernovae (SLSNe) in transient alert streams. Through this observational campaign, we spectroscopically classified 21 of the 50 SLSNe identified worldwide between 2019 November and 2022 January. Based on our original algorithm, we anticipated that FLEET would achieve a purity of about 50% for transients with a probability of being an SLSN,P(SLSN-I) > 0.5; the true on-sky purity we obtained is closer to 80%. Similarly, we anticipated FLEET could reach a completeness of about 30%, and we indeed measure an upper limit on the completeness of ≲33%. Here we present FLEET 2.0, an updated version of FLEET trained on 4780 transients (almost three times more than FLEET 1.0). FLEET 2.0 has a similar predicted purity to FLEET 1.0 but outperforms FLEET 1.0 in terms of completeness, which is now closer to ≈40% for transients withP(SLSN-I) > 0.5. Additionally, we explore the possible systematics that might arise from the use of FLEET for target selection. We find that the population of SLSNe recovered by FLEET is mostly indistinguishable from the overall SLSN population in terms of physical and most observational parameters. We provide FLEET as an open source package on GitHub: https://github.com/gmzsebastian/FLEET.more » « less