Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mapping 3D airflow fields is important for many HVAC, industrial, medical, and home applications. However, current approaches are expensive and time-consuming. We present Anemoi, a sub-$100 drone-based system for autonomously mapping 3D airflow fields in indoor environments. Anemoi leverages the effects of airflow on motor control signals to estimate the magnitude and direction of wind at any given point in space. We introduce an exploration algorithm for selecting optimal waypoints that minimize overall airflow estimation uncertainty. We demonstrate through microbenchmarks and real deployments that Anemoi is able to estimate wind speed and direction with errors up to 0.41 m/s and 25.1° lower than the existing state of the art and map 3D airflow fields with an average RMS error of 0.73 m/s.more » « less
-
The stethoscope is one of the most important diagnostic tools used by healthcare professionals, through a process called auscultation, to screen patients for abnormalities of the heart and lungs. While there are digital stethoscopes on the market which ease this process, it still takes years of training to properly use these devices to listen for abnormal sounds within the body. We present ARSteth, an intelligent stethoscope platform that improves the accessibility of stethoscopes for the general population, allowing anyone to perform auscultation in the comfort of their own homes. Our platform utilizes a combination of augmented reality (AR), acoustic intelligence, and human-machine interaction to dynamically guide users on where to place the stethoscope on different parts of the body (auscultation points), through visual and audio cues. Through user studies, we show that ARSteth, on average, can guide users within 13.2 mm from optimal auscultation points marked by licensed physicians in 13.09 seconds for each auscultation point. By guiding users towards more effective auscultation points, make preventative health screening more accessible and effective for everyone we are able to achieve higher confidence on classifying heart murmurs.more » « less
-
Domain-specific sensor deployments are critical to enabling various IoT applications. Existing solutions for quickly deploying sensing systems require significant amount of work and time, even for experienced engineers. We propose LegoSENSE, a low-cost open-source and modular platform, built on top of the widely popular Raspberry Pi single-board computer, that makes it simple for anyone to rapidly set up and deploy a customized sensing solution for application specific IoT deployments. In addition, the ‘plug and play’ and ‘mix and match’ functionality of LegoSENSE makes the sensor modules reusable, and allows them to be mixed and matched to serve a variety of needs. We show, through a series of user studies, that LegoSENSE enables users without engineering background to deploy a wide range of applications up to 9 × faster than experienced engineers without the use of LegoSENSE. We open-source the hardware and software designs to foster an ever-evolving community, enabling IoT applications for enthusiasts, students, scientists, and researchers across various application domains with or without prior experiences with embedded platforms or coding.more » « less
-
Cardiopulmonary ailments are a major cause of mortality. Stethoscopes are one of the most important tools that healthcare professionals use to screen patients for a variety of ailments, especially those related to the heart and lungs. Despite the growth of digital stethoscopes on the market, it takes years of training to properly use stethoscopes to listen for abnormal sounds within the body. In this demonstration, we present an intelligent stethoscope platform that makes stethoscopes more accessible to the general population. Our platform utilizes augmented reality (AR) to provide real-time guidance on where to properly place the stethoscope on the body, enabling the general population to screen themselves for ailments.more » « less
-
Breath monitoring is important for monitoring illnesses, such as sleep apnea, for people of all ages. One cause of concern for parents is sudden infant death syndrome (SIDS), where an infant suddenly passes away during sleep, usually due to complications in breathing. There are a variety of works and products on the market for monitoring breathing, especially for children and infants. Many of these are wearables that require you to attach an accessory onto the child or person, which can be uncomfortable. Other solutions utilize a camera, which can be privacy-intrusive and function poorly during the night, when lighting is poor. In this work, we introduce BuMA, an audio-based, non-intrusive, and contactless, breathing monitoring system. BuMA utilizes a microphone array, beamforming, and audio filtering to enhance the sounds of breathing by filtering out several common noises in or near home environments, such as construction, speech, and music, that could make detection difficult. We show that BuMA improves breathing detection accuracy by up to 12%, within 30cm from a person, over existing audio filtering algorithms or platforms that do not leverage filtering.more » « less
-
There has been an immense growth in sensors, actuators, and smart devices in recent years, which enable us to better sense, actuate, and understand the physical world. Despite this growth, we have yet to achieve fully intelligent environments. This is, in part, due to the large number of different organizations creating smart devices with proprietary technologies and communication protocols that are not compatible with each other and require significant engineering to incorporate and adapt to specific applications. In this work, we present an easy-to-install and low-cost embedded platform that allows users to rapidly configure a mixture of sensors and actuators. The system is based on the commonly-used Raspberry Pi ecosystem, easily configurable, and does not require users to have prior knowledge of programming, which allows anyone, regardless of background, to use. We also introduce a battery-powered wireless extension module that is suitable for mobile drone applications, where a chord-powered Raspberry Pi is not suitable. We demonstrate the impact our system has on enabling drones with flexible sensing modalities and creating smarter environments by integrating our platform into a variety of intelligent home applications.more » « less
-
With the recent societal impact of COVID-19, companies and government agencies alike have turned to thermal camera based skin temperature sensing technology to help screen for fever. However, the cost and deployment restrictions limit the wide use of these thermal sensing technologies. In this work, we present SIFTER, a low-cost system based on a RGB-thermal camera for continuous fever screening of multiple people. This system detects and tracks heads in the RGB and thermal domains and constructs thermal heat map models for each tracked person, and classifies people as having or not having fever. SIFTER can obtain key temperature features of heads in-situ at a distance and produce fever screening predictions in real-time, significantly improving screening through-put while minimizing disruption to normal activities. In our clinic deployment, SIFTER measurement error is within 0.4°F at 2 meters and around 0.6°F at 3.5 meters. In comparison, most infrared thermal scanners on the market costing several thousand dollars have around 1°F measurement error measured within 0.5 meters. SIFTER can achieve 100% true positive rate with 22.5% false positive rate without requiring any human interaction, greatly outperforming our baseline [1], which sees a false positive rate of 78.5%.more » « less