Foundation models excel in tasks such as content generation, zero-shot classifications, and reasoning. However, they struggle with sensing, interacting, and actuating in the physical world due to their dependence on limited sensors and actuators in providing timely contextual information or physical interactions. This reliance restricts the system’s adaptability and coverage. To address these issues and create an embodied AI with foundation models (FMs), we introduce Embodied Reconfigurable Drone Agent (EmbodiedRDA). EmbodiedRDA features a custom drone platform that can autonomously swap payloads to reconfigure itself with a diverse list of sensors and actuators. We designed FM agents to instruct the drone to equip itself with appropriate physical modules, analyze sensor data, make decisions, and control the drone’s actions. This enables the system to perform a variety of tasks in dynamic physical environments, bridging the gap between the digital and physical worlds.
more »
« less
This content will become publicly available on May 6, 2026
FlexiFly: Interfacing the Physical World with Foundation Models Empowered by Reconfigurable Drone Systems
Foundation models (FM) have shown immense human-like capabilities for generating digital media. However, foundation models that can freely sense, interact, and actuate the physical domain is far from being realized. This is due to 1) requiring dense deployments of sensors to fully cover and analyze large spaces, while 2) events often being localized to small areas, making it difficult for FMs to pinpoint relevant areas of interest relevant to the current task. We propose FlexiFly, a platform that enables FMs to “zoom in” and analyze relevant areas with higher granularity to better understand the physical environment and carry out tasks. FlexiFly accomplishes by introducing 1) a novel image segmentation technique that aids in identifying relevant locations and 2) a modular and reconfigurable sensing and actuation drone platform that FMs can actuate to “zoom in” with relevant sensors and actuators. We demonstrate through real smart home deployments that FlexiFly enables FMs and LLMs to complete diverse tasks up to 85% more successfully. FlexiFly is critical step towards FMs and LLMs that can naturally interface with the physical world.
more »
« less
- Award ID(s):
- 1943396
- PAR ID:
- 10592096
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400714795
- Page Range / eLocation ID:
- 463 to 476
- Format(s):
- Medium: X
- Location:
- UC Irvine Student Center. Irvine CA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Prompt-tuning is an emerging strategy to adapt large language models (LLM) to downstream tasks by learning a (soft-)prompt parameter from data. Despite its success in LLMs, there is limited theoretical understanding of the power of prompt-tuning and the role of the attention mechanism in prompting. In this work, we explore prompt-tuning for one-layer attention architectures and study contextual mixture-models where each input token belongs to a context-relevant or -irrelevant set. We isolate the role of prompttuning through a self-contained prompt-attention model. Our contributions are as follows: (1) We show that softmax-prompt-attention is provably more expressive than softmax-self-attention and linear-prompt-attention under our contextual data model. (2) We analyze the initial trajectory of gradient descent and show that it learns the prompt and prediction head with near-optimal sample complexity and demonstrate how the prompt can provably attend to sparse context-relevant tokens. (3) Assuming a known prompt but an unknown prediction head, we characterize the exact finite sample performance of prompt-attention which reveals the fundamental performance limits and the precise benefit of the context information. We also provide experiments that verify our theoretical insights on real datasets and demonstrate how prompt-tuning enables the model to attend to context-relevant information.more » « less
-
Foundation Models (FMs) are gaining increasing attention in the biomedical artificial intelligence (AI) ecosystem due to their ability to represent and contextualize multimodal biomedical data. These capabilities make FMs a valuable tool for a variety of tasks, including biomedical reasoning, hypothesis generation, and interpreting complex imaging data. In this review paper, we address the unique challenges associated with establishing an ethical and trustworthy biomedical AI ecosystem, with a particular focus on the development of FMs and their downstream applications. We explore strategies that can be implemented throughout the biomedical AI pipeline to effectively tackle these challenges, ensuring that these FMs are translated responsibly into clinical and translational settings. Additionally, we emphasize the importance of key stewardship and co-design principles that not only ensure robust regulation but also guarantee that the interests of all stakeholders—especially those involved in or affected by these clinical and translational applications—are adequately represented. We aim to empower the biomedical AI community to harness these models responsibly and effectively. As we navigate this exciting frontier, our collective commitment to ethical stewardship, co-design, and responsible translation will be instrumental in ensuring that the evolution of FMs truly enhances patient care and medical decision-making, ultimately leading to a more equitable and trustworthy biomedical AI ecosystem.more » « less
-
Fine-tuning large language models (LLMs) using low-rank adaptation (LoRA) has become a highly efficient approach for downstream tasks, particularly in scenarios with limited computational resources. However, applying LoRA techniques to quantized LLMs poses unique challenges due to the reduced representational precision of quantized weights. In this paper, we introduce CLoQ (Calibrated LoRA initialization for Quantized LLMs), a simplistic initialization strategy designed to overcome these challenges. Our approach focuses on minimizing the layer-wise discrepancy between the original LLM and its quantized counterpart with LoRA components during initialization. By leveraging a small calibration dataset, CLoQ quantizes a pre-trained LLM and determines the optimal LoRA components for each layer, ensuring a strong foundation for subsequent fine-tuning. A key contribution of this work is a novel theoretical result that enables the accurate and closed-form construction of these optimal LoRA components. We validate the efficacy of CLoQ across multiple tasks such as language generation, arithmetic reasoning, and commonsense reasoning, demonstrating that it consistently outperforms existing LoRA fine-tuning methods for quantized LLMs, especially at 2-bit.more » « less
-
Parameter-Efficient Fine-Tuning (PEFT) has become the standard for customising Foundation Models (FMs) to user-specific downstream tasks. However, typical PEFT methods require storing multiple task-specific adapters, creating scalability issues as these adapters must be housed and run at the FM server. Traditional prompt tuning offers a potential solution by customising them through task-specific input prefixes, but it under-performs compared to other PEFT methods like LoRA. To address this gap, we propose Low-Rank Prompt Adaptation (LoPA), a prompttuning-based approach that performs on par with state-of-the-art PEFT methods and full fine-tuning while being more parameter-efficient and not requiring a server-based adapter. LoPA generates soft prompts by balancing between sharing task-specific information across instances and customization for each instance. It uses a low-rank decomposition of the soft-prompt component encoded for each instance to achieve parameter efficiency. We provide a comprehensive evaluation on multiple natural language understanding and code generation and understanding tasks across a wide range of foundation models with varying sizes.more » « less
An official website of the United States government
