Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 10, 2024
-
Concept-based interpretations of black-box models are often more intuitive for humans to understand. The most widely adopted approach for concept-based interpretation is Concept Activation Vector (CAV). CAV relies on learning a linear relation between some latent representation of a given model and concepts. The linear separability is usually implicitly assumed but does not hold true in general. In this work, we started from the original intent of concept-based interpretation and proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions. We showed that for a general (potentially non-linear) concept, we can mathematically evaluate how a small change of concept affecting the model’s prediction, which leads to an extension of gradient-based interpretation to the concept space. We demonstrated empirically that CG outperforms CAV in both toy examples and real world datasets.more » « lessFree, publicly-accessible full text available May 1, 2024
-
Adversarial Examples Detection (AED) is a crucial defense technique against adversarial attacks and has drawn increasing attention from the Natural Language Processing (NLP) community. Despite the surge of new AED methods, our studies show that existing methods heavily rely on a shortcut to achieve good performance. In other words, current search-based adversarial attacks in NLP stop once model predictions change, and thus most adversarial examples generated by those attacks are located near model decision boundaries. To surpass this shortcut and fairly evaluate AED methods, we propose to test AED methods with Far Boundary (FB) adversarial examples. Existing methods show worse than random guess performance under this scenario. To overcome this limitation, we propose a new technique, ADDMU, adversary detection with data and model uncertainty, which combines two types of uncertainty estimation for both regular and FB adversarial example detection. Our new method outperforms previous methods by 3.6 and 6.0 AUC points under each scenario. Finally, our analysis shows that the two types of uncertainty provided by ADDMU can be leveraged to characterize adversarialexamples and identify the ones that contribute most to model’s robustness in adversarial training.more » « less